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1. Introduction1

1.1. Notation2

We have so far used α and β to denote the polynomial terms in the ARMA model. Un-3

fortunately,α andβ are popular Greek letters in the cointegration literature as well. Here4

I will follow the standard convention to denote the k× r dimensional cointegrating vec-5

tor by β and the k × r dimensional speed of adjustment vector by α. For the (k × r)6

dimensional cointegrating vector β, I will use subscript notation to refer to elements of7

the vector referring to variables that cointegrate with each other. Note that I will not8

use bold letters to denote vectors and/or matrices, only in the case of companion form9

notation. Also, I will use standard yt and xt notation to illustrate single equation coin-10

tegration examples and will follow the vector notation Xt as used in the VAR notes in11

Lecture 4.12

1.2. Background13

We have seen from Lecture 3 on unit-root processes that there are consequence of unit-14

roots in the data, ie., in xt, on the asymptotic distribution as well as the rate of conver-15

gence of the OLS estimator ρ̂ (or MLE under normality of the error term) when the true16

data generating process (DGP) is a random walk model. That is, the DGP is17

xt = xt−1 + ut (1)18

with ut ∼ WN(0,σ2) and we estimate either of the following three models19

xt = ρxt−1 + ut20

xt = c + ρxt−1 + ut21

xt = c + δt + ρxt−1 + ut.22
23

Variables that contain a unit-root are said to be integrated (written as I(1)), where the 124

signifies that the I(1) process becomes stationary when differenced 1 time.25

Integration is formally defined as follows:26

Definition 1 (Integration): A series xt is said to be integrated of order d, denoted xt ∼ I(d) if

it becomes stationary with an ARMA representation (without any deterministic trend in it) after

being differenced d times.

From the definition of Integration above it should be clear that a stationary variable is27
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integrated of order I(0). It should also be pointed out here that when mixing time series1

data with different orders of integration, the one with the highest order will dominate2

the lower order integrated series. This means that if we linearly combine two series,3

one of which is I(0) and the other is I(1), then the new resulting series will inherit the4

integratedness properties of the I(1) series. Similarly, for higher order integrated series,5

combining and I(1) and an I(2) series, yields an I(2) series, and we can see how this6

generalises. Most of the time when dealing with economic and financial time series data,7

it is rather rarely the case that we will observe a series that is integrated of order 2, it is8

pretty much a zero probability event to see a series that is integrated of an order higher9

than 2.10

1.3. Integration accounting (or keeping ‘balance’)11

A concept that is related to the orders of integration that were discussed above and what12

is frequently referred to as ‘integration accounting’ or keeping ‘balance’ in the literature is13

that the left hand side of an equation has to have the same order of integration as the14

right hand side. That is, it has to be balanced. For instance, if we have a standard set-up15

of the form16

yt = c +βxt + ut (2)17

and yt, xt and ut have different orders of integration, then, these have to balance out. As18

an example, if yt ∼ I(1) and xt ∼ I(0), then ut has to be I(1) for (2) to be balanced. An19

I(0) variable such as xt here can never explain the variation in an I(1) variable yt so it20

must be the case that all the ‘integratedness’ of the I(1) variable yt gets absorbed in the21

‘error term’ ut. Since the left hand side is I(1) and xt ∼ I(0) we have that ut ∼ I(1) so that22

the right hand side I(0) + I(1) gives an I(1) variable. Now it should be clear that it is not23

a good idea to have the ’error term’ ut be an I(1) series as we will then obtain spurious24

(invalid/non-sense) regression results. This means that none of the standard errors or25

t−statistics of β the ‘regression’ in (2) can be used for inference (we will see more on this26

below).27

Similarly, if we have that y ∼ I(0) and x ∼ I(1) then this equation is also unbalanced28

and the variation in the I(0) variable can never be explained by the variation in the29

I(1) variable. What is different to the previous case is that this relation can easily be30

balanced by setting β = 0. What happens asymptotically is that, unlike in the spurious31

regression result above, the t−statistic still has a standard normal distribution. What32

exactly asymptotic here means we will see later, as it is well known now that there can33

be substantial small sample distortions in the distribution. Having an I(0) left hand side34
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variable and an I(1) (or at least very very persistent) predictor or regressors on the right1

hand side is a common problem in economics and finance where a stationary variable2

such as returns are regressed on a very persistent predictor variable like the dividend3

yield.4

When we have two I(1) variables, ie., both yt and xt are I(1), then we have a balanced5

equation again and it then depends upon what happens when these two I (1) variables6

are linearly combined. That is, if (yt− c−βxt) = ut yields an I(0) random variable, then7

we have the special case of the two integrated variables being cointegrated (they form8

a stable long-run equilibrium relation), allowing us to (more or less) conduct standard9

inference on ĉ and β̂. If they are not, then there will be two unrelated I(1) variables which10

when linearly combined to not yield an error term ut ∼ I(0), so that ut will also have11

to be an I(1) variable, leading again to spurious regression and all asymptotic inference12

being invalid.13

1.4. Some examples of cointegrated variables14

It is evident from many time series, particularly from economic and financial time se-15

ries, that these contain unit-roots and are therefore integrated or I(1) random variables.16

Nevertheless, we also know form economic theory that many of these I(1) variables are17

bound by some relation to another I(1) variable. If the linear combination of I(1) vari-18

ables results in an I(0) variable, then the I(1) variables are said to have formed a ‘long-run19

equilibrium relation’. This is known as co-integration (or cointegration) in the economic20

literature. The term ‘long-run’ here means that the I(1) variables drift apart from one21

another by only a transitory part and that there exists a (linear) attractor set (the equi-22

librium relation) that ensures that the movement away from equilibrium only lasts for a23

‘finite’ amount of time. Moreover, the movement of a cointegrated set of variables is, on24

average, bound together.25

In economics and finance, some classic examples of I(1) variables that form a cointe-26

grating relation (an I(0) relation) are the following:27

1. Permanent income model: Consumption and Income ∼ I(0)28

2. Money demand model: Money, Income, Prices and Interest rates ∼ I(0)29

3. Models from Growth Theory: Income, Consumption and Investment ∼ I(0)30

4. PPP: Exchange rates and Price levels in two countries ∼ I(0)31

5. Fisher equation: nominal interest rates and inflation ∼ I(0)32
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6. Term structure models of interest rates: longer term rates and the short ∼ I(0)1

7. Asset pricing models: Consumption, asset prices and Income ∼ I(0)2

and many many others.3

Integrated series that form a stationary I(0) relationship with each other often do4

so in a way that binds them together quite tightly. Any deviations from the long-run5

equilibrium relation (the attractor set) that are encountered are then adjusted to either6

by each variable separately, or jointly as a whole system. To illustrate this theoretical7

relation, consider the pair {x1, x2} of I(1) variables that form a (positive) cointegration8

relationship resulting in an I(0) equilibrium error. This cointegrating relation can be9

expressed visually as shown below in Figure 1.10

thset me

HB(q) N[·] HC(q)- - - -
u(k) y(k)xB(k) xC(k)

x2

x1

Figure 1: An LNL Block Oriented Model Structure

18.3 Specification: VECM 699

(1) Adjustments are made by y1,t
Equilibrium is restored by y1,t decreasing toward point A while y2,t
remains unchanged at its initial position. Assuming that the short-run

movements in y1,t are a linear function of the size of the shock, ut, the

adjustment in y1,t is given by

y1,t − y1,t−1 = α1ut−1 + v2,t = α1(y1,t−1 − βc − βyy2,t−1) + v1,t , (18.2)

where α1 < 0, is a parameter and v1,t is a disturbance term.

(2) Adjustments are made by y2,t
Equilibrium is restored by y2,t increasing toward point C, with y1,t re-

maining unchanged after the initial shock. Assuming that the short-run

movements in y2,t are a linear function of the size of the shock, ut, the

adjustment in y2,t is given by

y2,t − y2,t−1 = α2ut−1 + v2,t = α2(y1,t−1 − βc − βyy2,t−1) + v2,t , (18.3)

where α2 > 0 is a parameter and v2,t is a disturbance term.

(3) Adjustments are made by both y1,t and y2,t
Both equations (18.2) and (18.3) are now in operation with y1,t and

y2,t converging to a point on the long-run equilibrium such as D. The

relative strengths of the two adjustment paths depend upon the relative

magnitudes of the adjustment parameters α1 and α2.

y1

y2

B

A

C

D

Figure 18.4 Phase diagram demonstrating a vector error correction model.

Equations (18.2) and (18.3) represent a VECM as the two variables cor-

rect themselves in the next period according to the error from being out of

equilibrium. For this reason, the parameters α1 and α2 are known as the

error correction parameters. An important characteristic of the VECM is

1

Figure 1: Equilibrium relation attractor set. The diagonal line represents the long-run equilibrium
relation between x1 and x2.

The entire diagonal line in Figure 1 represents points on the equilibrium long-run11

relation between x1 and x2. Suppose now that there is a (transitory) movement away12

from this long-run relationship to point B in Figure 1 above equilibrium (equilibrium13

error is positive). Then there are 3 possible scenarios for this system to move back to14

equilibrium.15

1. x1 adjusts (decreases) in the next period to move to point A on the attractor set,16

2. x2 adjusts (increases) in the next period to move to point C on the attractor set, or17

3. both adjust towards point D on the diagonal.18

Under the first scenario, the error-correction mechanism for the first variable takes19
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the from1

∆x1t︸︷︷︸
<0

= α1 (x1t − c−β2x2t)︸ ︷︷ ︸
equilibrium error>0

2

where the equilibrium error εt = (x1t − c−β2x2t) is positive due to point B in Figure 13

being above the equilibrium relation and the adjustment in ∆x1t is less than zero due to4

x1t+1 < x1t. This implies thatα1 < 0. Under the second scenario we have5

∆x2t︸︷︷︸
>0

= α2 (x1t − c−β2x2t)︸ ︷︷ ︸
equilibrium error>0

6

with the adjustment in ∆x2tbeing greater than 0 due to x2t+1 > x2t which implies that7

α2 > 0. Under the last scenario, both adjustment occur.8

1.4.1. Permanent income example: real consumption and real income9

To see how these relationships take shape in ‘real empirical’ data, consider the relationship10

between log of real consumption and log of real income for the US over the period from11

1947:Q1 to 2013:Q4. The two series are plotted below in Figure 2. From the plot in

1947:Q1 1953:Q1 1959:Q1 1965:Q1 1971:Q1 1977:Q1 1983:Q1 1989:Q1 1995:Q1 2001:Q1 2007:Q1 2013:Q1
7.0

7.5

8.0

8.5

9.0

9.5

10.0

 

 
log(income)

log(consumption)

Figure 2: Time series plots of real income (GDP) and real personal consumption (in logs) from 1947:Q1
to 2013:Q4.

12

Figure 2 the clear upward trend in both series is obvious, as is the close ‘co-movement’13

of these two series. To see what type of relationship they form, we can look at a scatter14

plot of log income and log consumption, which is shown below in Figure 3. Comparing15

this scatter plot to the visual depiction of the theoretical attractor set generated by the16

cointegrating relation in Figure 1, we see that there is a fairly tight resemblance of the17
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relation staying close to equilibrium for most of the time over the interval of the sample1

data.2
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Figure 3: Scatter plot of real income (GDP) and real personal consumption (in logs) from 1947:Q1
to 2013:Q4.

1.4.2. Term structure data: 1, 5 and 10 year yields on US bonds3

As another example, consider the time series evolution of three different US bonds with4

yields to maturity of 1, 5 and 10 years. A plot over the time period form 1962:Q1 to5

2010:Q3 is shown below in Figure 4. There is no definite upward trend (not for a long6

period of time anyway) as was the case for real consumption and real income, neverthe-7

less, the series are again bound together and co-move over the approximately 50 years of8

data. A 3D scatter plot of the three series shown in Figure 5 reveals the again fairly tight9

long-run relationship that is formed between the yields. In the three variable scenario10

the attractor set is still a straight line but now in the 3D space so that deviations from this11

equilibrium line can be adjusted to in a number of different ways.12

2. Spurious regression and ignoring long-run relationships13

An important scenario to look at now is to see what happens if we make a mistake. There14

are two possible scenarios again. The first one is ‘running a regression’ of two independent15

I(1) series. The second one is ignoring long-run relationships all together and using the16

differenced data to a regression.17
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Figure 4: Time series plots of yields of 1 year, 5 year and 10 year US government bonds from 1962:Q1
to 2010:Q3.
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Figure 5: 3D scatter of the yields of 1 year, 5 year and 10 year US government bonds from 1962:Q1
to 2010:Q3.

2.1. Spurious regression1

What happens when to the OLS estimator when two independent I(1) series are re-2

gressed on each other is a question that was raised initially by Yule (1926) and later on by3

Granger and Newbold (1974). Theoretical results were provided later by Phillips (1986).4

The observed problem was that when very persistent time series data were used in ‘stan-5
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dard regression’ analysis, one would generally find a very high R2 (or R̄2) of well above1

90%, highly significant t−statistic and yet a very low Durbin-Watson statistic, indicating2

strong serial correlation in the residuals of the regression model. This is the classic case3

when two I(1) series do not form a long-run relation (thus do not cointegrate) and in4

the context of our ‘integration accoutring’ framework discussed above this means that the5

residual inherits the properties of the left hand side variable.6

The simplest and most intuitive way to see what happens to our usual OLS estimator7

and its t−statistic when two independent I(1) series are regressed on another is via a8

simulation exercise. Let us set the sample size to T = 100 and simulate N = 100 0009

sets of I(1) series for yt and xt (no constant, hence no drift) and regress then yt on just10

xt, ie, estimate the ‘regression model’ yt = βxt + ut. The Matlab code for this simulation is11

below.12

1 % example spurious regression with two independent random walks.

2 clear all;clc;

3 % check matlabpool if open

4 if ~matlabpool(’size’) > 0; matlabpool; end

5 % sample size and number of simulations

6 %%

7 T = 1e2;

8 Nsim = 1e5;

9 seed(1234);

10 c = 0.0;

11 tic;

12 % level series

13 y = cumsum(c+randn(T,Nsim));

14 x = cumsum(c+randn(T,Nsim));

15

16 % differenced series

17 dy = y(2:T,:)-y(1:T-1,:);

18 dx = x(2:T,:)-x(1:T-1,:);

19

20 % storage allocation

21 bhat = zeros(Nsim,1);

22 tstat = zeros(Nsim,1);

23

24 % main loop

25 parfor n = 1:Nsim

26 olsout = fastols(y(:,n), x(:,n));

27 bhat(n,:) = olsout.bhat;

28 tstat(n,:) = olsout.tstat;

29 % based on differenced data

30 olsoutd = fastols(dy(:,n), dx(:,n));

31 bhatd(n,:) = olsoutd.bhat;

32 tstatd(n,:) = olsoutd.tstat;
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33 end;

34 toc;

35

36 %% level series

37 % p-value for 95% CI (it is not 5%)

38 fprintf(’Pr(|t-stat|>1.96) (should be 0.05): % 2.4f \n’, mean(abs(tstat)>1.96))

39 % plots

40 clf;

41 % bhat

42 dims = [.4 .4];

43 %subplot(1,2,1);

44 setplot(dims,11);

45 h1 = histogram(bhat,300,[0 1/T]);

46 ylim([0 4.1])

47 xlim([-5 5])

48 setytick(1);

49 setyticklabels([0:1:5])

50 %print2pdf(’../lectures/graphics/spurious_bhat’);

51 %

52 % tstat

53 setplot(dims,10.50);

54 setytick(2);

55 h2 = histogram(tstat,300,1);

56 xlim([-60 60])

57 setytick(2);

58 %print2pdf(’../lectures/graphics/spurious_tstat’);

59

60 %% differenced data

61 % p-value for 95% CI (it is not 5%)

62 fprintf(’Pr(|t-stat|>1.96) (should be 0.05): % 2.4f \n’, mean(abs(tstatd)>1.96))

63 % plots

64 clf;

65 % bhat

66 dims = [.4 .4];

67 %subplot(1,2,1);

68 setplot(dims,11);

69 h1 = histogram(bhatd,300,[0 1/T]);

70 ylim([0 4.1])

71 xlim([-5 5])

72 setytick(1);

73 setyticklabels([0:1:5])

74 %print2pdf(’../lectures/graphics/spurious_bhatd’);

75 %

76 % tstat

77 setplot(dims,10.50);

78 setytick(2);

79 h2 = histogram(tstatd,300,1);

80 xlim([-60 60])

81 setytick(2);

82 %print2pdf(’../lectures/graphics/spurious_tstatd’);

Matlab Code 1: example spurious regression.m
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The histograms, together with the corresponding distributions under a stationary sce-1

nario are plotted below in Figure 6. As we can see from Figure 6, the t−statistic in Panel2

(b) should be standard normal distributed (as indicated by the red densities) under our3

usual regression assumptions. This is clearly not the case. If one counts the number of
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(a) Sampling distribution of β̂.
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(b) Sampling distribution of t−statistic.

Figure 6: Sampling distribution of the OLS estimate and it’s t−statistic.
4

times one gets a significant t−statistic when considering a 95% level of significance, this5

values is nearly 86%, when a sample size of T = 100 is used and we average over the6

N = 100 000 simulations. This is evidently much larger than the nominal value that it7

should be of 5%. Thus using a standard t−statistic is meaningless in this scenario. Sim-8

ilarly, from Panel (a) we can see that the sampling distribution of our estimator is also9

much more dispersed in the I(1) spurious regression case than what it should be if the10

data were I(0).11

It should be pointed out here that this is not a small sample problem hence does not12

disappear as the samples size increases. There is no way of remedying spurious regres-13

sion problems in any other way but to difference the two I(1) series and then use the14

difference series to look at the relationship between the variables of interest.115

To see what happens in the same simulation scenario that we have created when the16

differenced data are used in the regression, ie., ∆yt = β∆xt + ut, we can again plot the17

sampling distributions of β̂ and its t−statistic. These distributions are shown below in18

Figure 7. As is evident from Figure 7, the distributions take on the expected shapes that19

asymptotic theory dictates. The proportion of significant t−statistics is 0.0525 so that the20

size of the t−test is expected.21

1If the two series cointegrate, then things are different again and we will discuss this later.
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Figure 7: Sampling distribution of the OLS estimate and it’s t−statistic.

2.2. Consequences of ignoring Cointegration1

Should we always then work with differenced data? Let us now look at what happens2

when you have a set of I(1) variables that form a cointegrating relationship but you3

decide to difference the data and use the differences to relate the variables. More specifi-4

cally, consider the following cointegrated system with one common stochastic trend.5

yt = wt + uyt (3a)6

xt = wt + uxt (3b)7

wt = wt−1 + uwt (3c)8
9

where uit ∼ WN(0,σ2
ui
), ∀i = y, x, w and Cov(uyt,uxs) = σuxy when t = s and 0 otherwise10

and uwt uncorrelated with uyt and uxt. That is,11 
uyt

uxt

uwt

 ∼WN




0

0

0

 ,


σ2

uy σuxy 0

σuxy σ2
ux 0

0 0 σ2
uw


 (4)12

13

Ignoring the cointegrating relation formed by the relations in (3) and differencing14

yields to15

∆yt = ∆wt + ∆uyt16

= uwt + ∆uyt17
18
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and1

∆xt = ∆wt + ∆uxt2

= uwt + ∆uxt3
4

Now, estimating the relation by OLS regression5

∆yt = γ∆xt +εt

6

gives an estimate of γ. This estimate will have the following property:7

γ̂ =
T−1 ∑T

t=1 ∆xt∆yt

T−1
∑T

t=1 ∆x2
t

8

=
T−1 ∑T

t=1(uwt + ∆uxt)(uwt + ∆uyt)

T−1
∑T

t=1(uwt + ∆uxt)2
9

=
T−1 ∑T

t=1(u
2
wt + ∆uxtuwt + uwt∆uyt + ∆uxt∆uyt)

T−1
∑T

t=1(u
2
wt + 2uwt∆uxt + ∆uxt2)

(5)10

11

where the plims of the individual terms in (5) are as follows:12

plim
T→∞ T−1

T∑
t=1

u2
wt = σ

2
uw13

plim
T→∞ T−1

T∑
t=1

∆uxtuwt = E(∆uxtuwt)︸ ︷︷ ︸
=0 by assumption

14

plim
T→∞ T−1

T∑
t=1

uwt∆uyt = E(uwt∆uyt)︸ ︷︷ ︸
=0 by assumption

.15

16

Further, for the other relations we obtain:17

plim
T→∞ T−1

T∑
t=1

∆uxt∆uyt = E(∆uxt∆uyt)18

= 2E(uxtuyt)19

= 2σuxuy20

14



plim
T→∞ T−1

T∑
t=1

∆u2
xt = E(∆u2

xt)1

= 2σ2
ux .2

3

The plim of the OLS estimate γ̂ is then:4

plim
T→∞α̂ =

σ2
uw + 2σuxuy

σ2
uw + 2σ2

ux

. (6)5

Thus, unlessσ2
ux = σuxuy , there is a wedge between the true value of γ = 1 and γ̂, and the6

size of this wedge will depend on the magnitude and sign ofσuxuy . From this we see that7

ignoring a cointegrating relationship creates a bias in the OLS regression coefficients.8

3. The Cointegrated VAR model9

3.1. Formal Definitions10

Let us now formally define cointegrating relations and the error-correction representa-11

tion, also sometimes known as equilibrium correction, in a general VAR(p) model. To12

motivate the set-up, consider initially the k−variable VAR(1) model (with zero mean13

here for simplicity) which we can write in its Vector Error Correction Model (VECM)14

form as:15

A(L)Xt−1 = Ut16

(Ik − A1L)Xt = Ut17

Xt = A1Xt−1 + Ut18

∆Xt = (A1 − Ik)Xt−1 + Ut [−Xt−1]19

∆Xt = − (Ik − A1)︸ ︷︷ ︸
Π=−A(1)

Xt−1 + Ut20

∆Xt = ΠXt−1 + Ut. (7)21
22

The relation in (7) is the VECM form of the VAR(1). Similarly, for a VAR(2), we get23

A(L)Xt−1 = Ut, with A(L) = (Ik − A1L− A2L2)24

Xt = A1Xt−1 + A2Xt−2 + Ut25

∆Xt = −(Ik − A1)Xt−1 + A2Xt−2 + Ut [−Xt−1]26

15



∆Xt = −(Ik − A1 − A2)Xt−1 + A2Xt−2 − A2Xt−1︸ ︷︷ ︸
=−A2∆Xt−1

+Ut [±A2Xt−1]1

∆Xt = ΠXt−1 + Γ1∆Xt−1 + Ut. (8)2
3

where Π = −A(1) and Γ1 = −A2.4

For a VAR(3), we get5

A(L)Xt−1 = Ut, with A(L) = (Ik − A1L− A2L2 − A3L3)6

Xt = A1Xt−1 + A2Xt−2 + A3Xt−3 + Ut7

∆Xt = −(Ik − A1)Xt−1 + A2Xt−2 + A3Xt−3 + Ut [−Xt−1]8

∆Xt = −(Ik − A1)Xt−1 + (A2 + A3)Xt−2 − A3∆Xt−2 + Ut [±A3Xt−2]9

∆Xt = −(Ik − A1 − A2 − A3)Xt−1 + (A2 + A3)Xt−2 − (A2 + A3)Xt−1︸ ︷︷ ︸
−(A2+A3)∆Xt−1

[±(A2 + A3)Xt−1]

10

+ Γ1∆Xt−1 + Ut11

∆Xt = ΠXt−1 + Γ1∆Xt−1 + Γ2∆Xt−2 + Ut. (9)12
13

where Π = −A(1), Γ1 = −A2 − A3 and Γ2 = −A3.14

Now you can see how this generalises to the k dimensional VAR(p) model as:15

A(L)Xt = Ut (10)16

Xt = A1Xt−1 + A2Xt−2 + . . . + ApXt−p + Ut17
18

where A(L) = I + A1L + A2L2 + . . . + ApLp. VAR in (10) can be written as the VECM19

Γ(L)∆Xt = ΠXt−1 + Ut (11)20

where21

Π = −A(1) = −(I − A1 − A2 − . . . Ap)22

Γ(L) = Ik − Γ1L− Γ2L2 − Γ3L3 − . . .− Γp−1Lp−1
23
24

and25

Γ j = −
p∑

i= j+1

Ai.

26

16



We have seen in Lecture 3 (equation 91) that we can always factor a lag polynomial1

as:2

Ψ(L) = Ψ(1) + ∆Ψ̃(L).

3

Making use of this fact for the A(L) polynomial, that is, factor4

A(L) = A(1) + ∆Γ(L) (12)5

we can see that the VECM representation in (11) is nothing else than a multivariate6

Beveridge-Nelson decomposition, that is, (10) becomes7

A(L)Xt = Ut8

A(1) + ∆Γ(L)Xt = Ut9

∆Γ(L)Xt = −A(1)︸ ︷︷ ︸
Π

+Ut10

Γ(L)∆Xt = ΠXt−1 + Ut. (13)11
12

From the VECM representation of the VAR in (13) we can now also see that ’running a13

regression in first differences’ is equivalent to setting Π = 0, so this is a restriction that is put14

on the whole VECM system. If this is not supported by the data, ie., the truth is Π = 0,15

then this has the same effect as omitting an important variable from a cross-sectional16

regression, that is, lead to ommitted variable bias.17

Also, notice here that if there exists cointegration in the Xt vector, then Π is of reduced18

rank and can be factored into19

Π = αβ′

20

where α and β are as before the speed of adjustment parameters and the cointegrating21

vectors. What does it mean for Π to be of reduced rank? When a matrix is of reduced22

rank, then the number of linearly independent columns is less than k, so that det(Π) = 023

and hence inverse of Π does not exist. This is important because now there is no other24

way for the VAR in differences to be balanced in terms of stationarity. To see this, suppose25

Π was not of reduced rank. Then we could take the inverse of Π, and could write the26

system in (13) as:27

Π−1Γ(L)∆Xt︸ ︷︷ ︸
I(0)

= Xt−1︸︷︷︸
I(1)

+Π−1Ut︸ ︷︷ ︸
I(0)

. (14)28

17



But we have assumed that ∆Xt is I(0) and also that Ut ∼ WN(0, Σ) which is I(0), so1

this equation will not balance in terms of orders of integration. Therefore, Π must be2

of reduced rank and hence form a cointegrating relation that makes β′Xt ∼ I(0) for the3

VECM to be consistent with the assumptions that are imposed.4

Formally, we have the following definitions.5

Definition 2 (Cointegration): The components of the k dimensional vector Xt, are said to be

cointegrated of order d, b, denoted Xt ∼ CI(d, b), if

(i) all components of Xt are I(d);

(ii) ∃ β ( 6= 0) so that β′Xt ∼ I(d− b), b > 0.

The vector is called the co-integrating vector.

Also,6

Definition 3 (Error-correction representation): A vector time series Xt, has an error correc-

tion representation if it can be expressed as:

Γ(L)∆Xt,= αβ′Xt−1 + Ut

where Ut is a stationary multivariate disturbance, with Γ(L) = Ik − Γ1L− Γ2L2 − Γ3L3 − . . . ,

Γ(0) = Ik, Γ(1) is finite, andα 6= 0. (Point 4 of the Granger Representation theorem)

Remark 1 (Some points to keep in mind:):

• β has dimension (k× r), where the cointegrating rank r is equal to the number of

linearly independent cointegrating vectors and k is the dimension of Xt.

• the cointegrating vectors are the columns of β.

• the speed of adjustment vectors are the columns ofα.

• the number of common stochastic trends (unit-roots) that remain in system is

equal to (k− r).

• the decomposition of Π = αβ′ is not unique

Let us now look at a few examples.7

18



3.2. Examples of cointegrated VAR models1

3.2.1. Example 1: 2 variables, 1 cointegrating vector2

Consider the ‘triangular system’ representation (see Phillips (1991))3

x1t = β2x2t + u1t4

∆x2t = u2t5
6

where uit ∼ I (0) , ∀i = 1, 2. Here we will only assume I(0) or I(1) for simplicity, so7

ut could be white noise, but does not need to be and could also be a stationary ARMA8

process.9

The term x2t = x2,0 +
∑t

j=1 u2 j is the common stochastic trend in this example, with10

x2,0 being the initial condition. The cointegrating vector is β = [1,−β2]
′. To check this,11

it must be the case that, given x1t ∼ I(1) and x2t ∼ I(1), β′Xt ∼ I(0). To confirm this,12

write out β′Xt as:13

[
1 −β2

] [x1t

x2t

]
= x1t −β2x2t14

= β2x2t + u1t −β2(x2t−1 + u2t)15

= β2∆x2t + u1t −β2u2t16

= β2u2t + u1t −β2u2t17

= u1t ∼ I(0).18
19

3.2.2. Example 2: 3 variables, 1 cointegrating vector20

Consider the system21

x1t = β2

t∑
j=1

u2 j +β3

t∑
j=1

u3 j + u1t22

∆x2t = u2t23

∆x3t = u3t24

19



where uit ∼ I (0) , ∀i = 1, 2, 3 and the intimal conditions can be set to 0 again. We can see1

that all elements of Xt ∼ I(1), but that β′Xt ∼ I(0), that is:2

[
1 −β2 −β3

]
x1t

x2t

x3t

 = x1t −β2x2t −β3x3t3

[
1 −β2 −β3

]
x1t

x2t

x3t

 = β2

t∑
j=1

u2 j +β3

t∑
j=1

u3 j + u1t − (β2x2t +β3x3t)4

5

but xit = xi,0 +
∑t

j=1 ui j for i = 2, 3, so that6

[
1 −β2 −β3

]
x1t

x2t

x3t

 = β2

t∑
j=1

u2 j +β3

t∑
j=1

u3 j + u1t7

−
β2

t∑
j=1

u2 j +β3

t∑
j=1

u3 j

8

= u1t ∼ I(0)9

3.2.3. Example 3: 3 variables, 2 cointegrating vectors10

Suppose you have the system:11

x1t = β13x3t + u1t12

x2t = β23x3t + u2t13

x3t = x3t−1 + u3t14
15

where again uit ∼ I (0) , ∀i = 1, 2, 3. x3t follows a pure random walk thus x3t = x3,0 +16 ∑t
j=1 u3 j is the common stochastic trend.17

What are the two cointegrating vectors? Let’s look at β′Xt ∼ I(0) for β = [1, 0,−β13]
′

18

[
1 0 −β13

]
x1t

x2t

x3t

 = x1t + 0x2t −β13x3t19

20



[
1 0 −β13

]
x1t

x2t

x3t

 = β13x3t + u1t −β13 (x3t−1 + u3t)1

= β13∆x3t + u1t −β13u3t2

= u1t ∼ I(0)3
4

so β = [1, 0,−β13]
′ is a cointegrating vector.5

What about the second cointegrating vector? β = [0, 1,−β23]
′ gives6

[
0 1 −β23

]
x1t

x2t

x3t

 = 0β13x3t +β23x3t + u2t −β23 (x3t−1 + u3t)7

= β23∆x3t + u2t −β13u3t8

= u2t ∼ I(0)9
10

Example 1 (Cointegration in VARs: example with numbers): There is a lot more the-
ory, but let’s look at an example: Let the VAR(2) be given by

Xt =

 0.65 0.11 −0.1454
−0.27 1.28 −0.0358
−0.81 0.43 0.4962


︸ ︷︷ ︸

A1

Xt−1 +

0.12 0.09 0.16
0.21 −0.21 0.02
0.70 −0.17 0.33


︸ ︷︷ ︸

A2

Xt−2 + Ut

Is this model stationary? Forming the companion form and looking at eig(A) where

A =

[
A1 A2

I3 03

]
gives -0.6349, 0.0308, 0.3676, 0.7574, 1.0000, 0.9053. So one root is equal to one and the
others are less then one. There is one common stochastic trend (one unit root) and there
are 2 cointegrating vectors.

Let’s form the VECM from the cointegrated VAR as:

∆Xt = ΠXt−1 + Γ1∆Xt−1 + Ut

21



where

Π = −A (1)

= −


1 0 0

0 1 0
0 0 1

−
 0.65 0.11 −0.1454
−0.27 1.28 −0.0358
−0.81 0.43 0.4962

−
0.12 0.09 0.16

0.21 −0.21 0.02
0.70 −0.17 0.33




The rank of Π is 2, thus there are two cointegrating vectors. The eigenvalues of Π are 0
and −0.1669± 0.0396i. Recall that a VAR system will be cointegrated if some eigenval-
ues of Π are non-zero.

We can now put Π in reduced row echelon form to find the coefficients of the coin-
tegrating relations. In Matlab type rref(Π) to get:

rref(Π) =

1 0 −1.02
0 1 −1.1
0 0 0


thus 2 cointegrating vectors with β =

[
1 0 −1.02
0 1 −1.1

]′
. You can then solve forα as

αβ′ = Π

αβ′β′+ = Πβ
′+

α = Πβ
′+

where β′+ is the generalised or Moore-Penrose inverse of β′ (in Matlab pinv)
Soα is

α=

−0.23 0.20 0.0146
−0.06 0.07 −0.0158
−0.11 0.26 −0.1738


︸ ︷︷ ︸

Π

 0.6799 −0.3452
−0.3452 0.6277
−0.3138 −0.3384


︸ ︷︷ ︸

β′+

=

−0.23 0.20
−0.06 0.07
−0.11 0.26


so we get the first two columns of the Π matrix.
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4. Estimation of Cointegration relations1

Cointegrating relations can fundamentally be estimated by two different approaches. 1) a2

single equation approach and 2) a systems approach. As an alternative, one may choose3

not to estimate the cointegrating relation at all and impose the cointegrating restriction4

base upon economic theory. This evidently works only if one knows what the long-run5

relationship should be in terms of the parameters. For instance, from the term structure6

example above, we know for instance that if bond markets are efficient, then the 1 year7

and the 5 and 10 year rates should form a long-run relationship with two cointegrating8

vectors so that β′Xt−1 should take the from9

β′Xt−1 =

[
1 0 −1

1 −1 0

]
︸ ︷︷ ︸

=β′


1y

5y

10y


︸ ︷︷ ︸
=Xt−1

.

10

So here we have a pretty strong view on what β should look like based on economic/fi-11

nance theory.12

In the first example we had the relation between real consumption and income. In this13

example there is no theory that tells us what the relation should be between real income14

and consumption. All we know is the the income elasticity of consumption should be15

less than 1 in the long-run. Thus here we are interested in finding out what this long-run16

elasticity is form the data.17

4.1. Single Equation Methods18

Single equation estimation of cointegration relations was the first proposed method in19

the original Engle-Granger framework. It has some fairly stringent assumptions placed20

onto it though, so this can be a major disadvantge. These are:21

• only one cointegrating vector exists.22

• xt and yt ∼ I(1) but (xt, yt) ∼ CI(1, 1)23

• we know what goes on the left hand side and what on the right (the normalisation)24

Nevertheless, as we have seen that there can be potential issues with modelling real25

world (non-experimental) problems in a VAR framework due to the need to select the26

23



right model dimension as well as the lag structure, on top of the many unknown param-1

eters problem, it is not that clear wether a VAR approach is uniformley better.2

The Engle-Granger (EG) 2-step approach proceeds as follows:3

1. Regress yt on xt and a constant (and possibly a time trend, dummies etc.)4

yt = c +β2xt +εt (15)5

2. form residuals from the regression in 1) as ε̂t = yt − ĉ− β̂xt6

3. test for a unit-root in ε̂t by running the DF regression (using tables in E7

∆ε̂t = ρε̂t−1 + et

8

(no constant in this regression, why?). NOTE that because ε̂t are constructed based9

on estimated quantities (ie., the ĉ and β̂ term), we cannot treat it as know. This is10

classic constructed regressor problem. Hence, there are special DF critical values11

available that need to be use with the EG procedure.12

If ε̂t ∼ I(0) we have an equilibrium relation with cointegrating vector β = (1,−β2)
′

13

plus constant.14

Given we know our disequilibrium error in the last period, we can use ût−1 to form15

the Error correction representation16

Ay(L)∆yt = cy −αyε̂t−1 + u1t17

Ax(L)∆xt = cx −αxε̂t−1 + u2t18

for an arbitrary lag order VECM, where ε̂tt−1 = β′[yt−1, xt−1]
′ (plus constant) is the19

cointegrating relation. The VECM can then be estimate by OLS. The terms αy and αx20

are ”speed of adjustment” pacemakers, that tell us how quickly either of the left hand21

variables adjusts to deviations from long-run path. The term ‘weak exogeneity’ is often22

used to refer to a variable that does not respond to the long-run equilibrium when one23

of theα j, ∀ j = y, x is equal to zero.24

For example, when αx = 0, then xt is said to weakly exogenous and in our case thus25

collapses to a random walk model. To see this, set the lag polynomials A j(L) = I, ∀ j =26
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y, x, so that we get (ignoring constants in the CI relation) the triangular system1

∆yt = cy −αyε̂t−1 + u1t (16)2

∆xt = cx + u2t (17)3
4

so that5

yt = cy + (1−αy)yt−1 +β2xt−1 + u1t6

xt = x0 + cxt +
t∑

i=1

u2i7

8

where the xt relation is the common stochastic trend.9

It is possible to test for cointegration in this set up also by testing αy = 0 in (16)10

directly. These tests have been shown to be more powerful than the EG 2-step procedure.11

However, the test hinges on the following assumptions:12

• the cointegrating vector is being imposed so only possible for certain economic13

relations14

• assumes a lower triangular structure, so an exogeneity restriction on the system15

If these are not satisfied, it is not clear if the improvement in power still goes through.16

There exist many other cointegration tests for single equation models. Some well17

known ones are the Dynamic OLS (DOLS) approach of Stock and Watson (1993) or the18

AutoRegressive Distributed Lag of Pesaran-Shin-Smith (1998,2001)19

These approaches try to correct for the correlation between xt andεt in (15) by running20

the OLS regression with lags and leads of ∆xt, that is, instead of21

yt = c +β2xt +γ1∆xt−1 +γ2∆xt−2 + . . . +γp∆xt−p22

+$1∆xt+1 +$∆xt+2 + . . . +$q∆xt+q +εt23

and use the cointegrating vector from this relation.24

4.2. System Estimators based on the VECM25
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4.2.1. Johansen’s FIML Estimator1

The VECM relation in (13) is very useful because it enables us to be precise about when2

cointegration doesn’t hold. In these cases there is no β for which β′Xt is I(0) (r = 0) and3

so Π is always of full rank and so A(1) will be zero rank i.e A(1) = 0 and the model is4

an AR in ∆Xt i.e. there are no error correction terms. This either suggests that we test the5

rank of A(1) or whether α = 0. There are some distributional issues about the latter so6

the former has become the standard approach.7

Since the rank of A(1) depends on how many non-zero eigenvalues it has, Johansen8

focussed on these. Let the eigenvalues of A(1) be ordered as λ1, ..., λk. Then if we took9

the one closest to zero (generally the eigenvalues will be positive and so this will be λk)10

we could form -T ln(1− λ̂k) as a test. If λ̂k = 0 this test statistic would have the value11

zero and the further λ̂k is away from zero the bigger the test values. The maximum value12

of the true eigenvalue λk = 1 i.e. the k unit roots case.13

One can then adapt this test to test not rank zero but rank k by testing if λ̂k−r is zero14

etc. This is called the max test. The trace test looks at the trace of A(1), which is the15

sum of the eigenvalues. If there is no co-integration then all eigenvalues are zero so that16

the trace of A(1) would be zero. This is tested by something that is not strictly a trace17

but motivated by it viz. the statistic -T
∑k

j=1 ln(1− λ j). The scaling factor of T is used18

since the distribution of the eigenvalues essentially involve the normalizing factor of T.19

The distribution is non-standard. Later we will see that the estimators of cointegrating20

vectors generally have non-standard distributions and these are part of A(1), so it is not21

surprising that this is also true of the estimated eigenvalues.22

The most widely used method of estimating systems of equations with cointegrating23

relations is that of Johansen who assumed that the Xt followed a VAR. There are obvious24

analogues here with unit root testing. In the Dickey-Fuller approach it was assumed that25

Xt was an AR while in the Phillips and Perron test one did not need such an assump-26

tion. Johansen is essentially a vector extension of the Dickey-Fuller approach and the27

Phillips/Hansen work is the multivariate equivalent of the Phillips-Perron framework.28

The VAR(1) with cointegration has the form29

∆Xt = αβ
′Xt−1 + Ut

30
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and, if the Ut are i.i.d.MN(0, Σ), the log likelihood of this system is1

L = − (T− 1)k
2

ln(2π)− (T− 1)
2

ln(Σ)− 1
2

T∑
t=2

(∆Xt −αβ′Xt−1)
′Σ−1(∆Xt −αβ′Xt−1)

2

Johansen then maximizedL w.r.t. α, β and Σ. From the form of the likelihood it is clear3

that, if β was known, we would just obtain estimators ofα and Σ by performing OLS on4

each equation (this will be the same as SURE since all the regressors are identical). Hence5

one can concentrate them out ofL and then just solve the optimization w.r.t. β.6

In fact the structure is identical to that of the LIML estimator in simultaneous equa-7

tions work and the Cowles Commission solved that by finding the eigenvalues and vec-8

tors of a set of covariance matrices. Johansen does likewise. This means that there are no9

iterations and so convergence to the MLE’s is assured. Precise details on this algorithm10

are available in quite a few sources. The estimator of β has a non-standard distribution11

just as in the discussion above, so testing hypotheses about the cointegrating vectors12

needs to be done carefully as any test statistics which utilize β̂ will therefore have non13

-standard distributions.14

Johansen (1991) presents an algorithm using a full-information maximum likelihood15

estimation to test for the number of cointegrating vectors in equation (13). To implement16

this, two auxiliary OLS regressions need to be performed. These are:17

∆Xt = π̂0 + Ξ̂1∆Xt−1 + Ξ̂2∆Xt−2 + ût (18)18

and19

Xt−1 = θ̂+ ℵ̂1∆Xt−1 + ℵ∆Xt−2 + v̂t (19)20

where ∆Xt is the first difference of Xt, Ξ and ℵ stand for an (k× k) matrix of OLS coeffi-21

cient estimates and ût and v̂t denotes the (k× 1) vector of OLS residuals. k denotes the22

dimension of the vector Xt. Secondly, the OLS residuals ût and v̂t are used to calculate23

sample variance-covariance matrices24

Σ̂VV ≡ (1/T)
T∑

t=1

v̂tv̂′t Σ̂UU ≡ (1/T)
T∑

t=1

ûtû′t25

Σ̂UV ≡ (1/T)
T∑

t=1

ûtv̂′t Σ̂VU ≡ Σ̂′UV (20)26

27
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Then, the eigenvalues of the matrix1

Σ̂−1
VVΣ̂VUΣ̂

−1
UUΣ̂UV (21)2

are ordered in a descending sequence λ̂1 > λ̂3 > ... > λ̂k and can be used to determine3

the cointegration rank r. Precisely r eigenvalues are positive for k I(1) variables with a4

cointegration rank r and the other k − r eigenvalues are asymptotically zero. Further-5

more, two different procedures exist to test the rank of r. First, the trace test assesses the6

null hypothesis, that there are at most r positive eigenvalues whereby the alternative is7

that there are more than r positive eigenvalues. The test statistic takes the form8

Tr(r) = −T
k∑

i=r+1

ln(1− λ̂i) (22)9

The maximum eigenvalue test has the null hypothesis that there are exactly r positive10

eigenvalues against the alternative that there are precisely r + 1 positive eigenvalue. The11

corresponding test statistic is given by12

λmax(r, r + 1) = −T ln(1− λ̂r+1) (23)13

Critical values are supplied in Johansen (1991) and also in Osterwald-Lenum (1992).14

4.3. The ”Common Trends” Representation15

In a similar way to what we have assumed earlier let the series Xt be written as16

∆Xt = Ψ(L)Ut (24)17

ie., the Xt follow a VMA(∞) process where the Ut are now taken to be i.i.d(0, V). From18

that earlier lecture we can write this as19

∆Xt = Ψ(1)Ut + Ψ∗(L)∆Ut

20

and then it is a simple extension of the univariate analysis that the multivariate Beveridge-21

Nelson permanent component would be22

XP
t = Ψ(1)

T∑
t=1

Ut.

23
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Notice that Ψ(1) is a matrix so that the permanent component is potentially influenced by1

all the k shocks Ut unlike in the univariate case where there was a single shock affecting2

the permanent component. In general we could have k permanent components in the k3

series.4

Now let us look at the cointegration case. This says that5

β′Xt = β′(XP
t + XT

t ) = β′Ψ(1)
T∑

t=1

Ut +β
′XT

t

6

is I(0). In particular the var(β′Xt) must be bounded. But, because the variance of
∑T

t=1 Ut7

will rise with T, it is clear that the only way we can get var(β′Xt) to be bounded is if8

β′Ψ(1) = 0. Hence a first implication of co-integration is that the matrix Ψ(1) is not of9

full rank.10

Now the restriction β′Ψ(1) = 0 will mean that Ψ(1) must be of rank (k− r). Hence11

we could factorize it as Ψ(1) = JG where J is an k× (k− r) matrix of rank (k− r) while12

G is (k− r)× k and of rank (k− r). It is important to note that this decomposition is not13

unique i.e. Ψ(1) = JFF−1G = J∗G∗, where F is an arbitrary non-singular (k− r)× (k− r)14

matrix. Using the decomposition we get15

XP
t = JG

T∑
t=1

Ut16

17

and, defining τt = (J′ J)−1 JzP
t , we would have18

τt = G
T∑

t=1

Ut

19

which implies20

∆τt = Get.

21

The τt are (k− r) in number and are the k− r common permanent components among the22

Xt i.e. the presence of r co-integrating vectors among the Xt means that that there are23

k− r permanent components. When r = 0 we have the maximum number of permanent24

components of k. Using Stock and Watson’s description of the τt as ”common trends” we25

see that this is the generalization of the Beveridge-Nelson decomposition to co-integrated26

series. Notice that the rank of the matrix β is r and this is the number of co-integrating27

29



vectors whereas the number of common permanent components is k− r. Once one knows1

either of these one can work out the other.2

Which is the best way to think about co-integration? For some purposes the common3

trend approach is easier and it is often what people think about when they are describ-4

ing co-integration. Suppose for example that we had the prices on a stock index in three5

counties. Designate these as p1t, p2t and p3t. These should be I(1) processes and, by ar-6

bitrage, we would expect to see that p1t− p2t and p1t− p3t would be I(0). Consequently.7

with Xt =


p1t

p2t

p3t

 we would have8

β′1 =

[
1 −1 0

1 0 −1

]
.

9

But it’s also true that p1t− p2t and p2t− p3t would be I(0), since the first outcome would10

produce the second in that11

p2t − p3t = p2t − p1t + p1t − p3t.

12

These second set of relations produces co-integrating vectors13

β′2 =

[
1 −1 0

0 1 −1

]
14

which emphasizes the non-uniqueness of co-integrating vectors. Now we also could15

think of these prices as having a single permanent component in them and it is that16

which we would see when we graph these series. In fact the idea of a common trend was17

around for a long time. Before co-integration people tended to think of it determinis-18

tically i.e. they regarded the series with the format Xt = µt + ut as having a common19

trend. Today we would say that these series co-trend i.e. the deterministic parts of the20

permanent components (i..e the µt) are related versus the situation of co-integration in21

which the stochastic parts of the permanent components are connected . In fact we will22

often need to think of Xt as being composed of a deterministic permanent component bt23

and a stochastic permanent component G
∑

Ut− j plus some transitory variation. In such24

instances we would write25

∆Xt = µ + C(L)Ut

26
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and then β′µ may not be zero i.e. the co-integrating vector may not eliminate the deter-1

ministic trends. Indeed we may find that the co-trending vector i.e. the combination that2

eliminates the deterministic parts of any permanent components may be quite different3

from the co-integrating vectors which eliminate the stochastic parts.4

The other advantage of the common trends approach is that it enables us to broaden5

the class of processes to which the idea of co-integration can be applied. Thus we might6

start with the idea that each of the series is driven by a common factor ft and some7

idiosnycratic shock ut i.e. we can postulate that8

Xt = J ft + ut

9

We can now specify the nature of ft and ut in many ways. For example we might have10

∆ ft being a TAR or MS model and we could treat ut the same way. If ft is I(1) then11

this results in co-integration whenever the number of factors is less than k. This is essen-12

tially a multivariate components model. If one wanted to make it replicate the common13

(stochastic) trends approach above it is clear that one has to have the shocks into ft and ut14

being constructed from a common set of shocks Ut and one also needs to make some re-15

strictions upon the autocorrelation structure of ∆ ft and ∆ut. Factor models like this have16

become very popular in recent years. In some sense they are a bit more flexible than the17

approach described above which has ∆Xt being the linear process C(L)Ut, since one can18

account for some non-linear structure through an appropriate choice of a process for ∆ ft.19
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