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A B S T R A C T

The natural rate of interest is a key benchmark steady-state rate of return that is used by central banks to
measure the stance of monetary policy. Asset managers rely on estimates of the natural rate to make long-
term investment decisions for their clients. This paper outlines a number of important econometric issues
in the estimation of the natural rate of interest from a widely used structural model. Using a simulation
experiment as well as empirical data for the U.S., I show that one of the key parameters of the structural
model is overestimated and leads to a spuriously amplified downward trend in the natural rate. The paper
shows how the overestimation can be remedied and provides alternative estimates of the natural rate. Various
other issues are discussed that policy makers should be aware of when utilizing this model’s natural rate
estimates for policy decision.
1. Introduction

Since the global financial crisis, nominal interest rates have declined
substantially to levels last witnessed following the Great Depression.
The academic as well as policy literature has attributed this decline
in nominal interest rates to a decline in the natural rate of interest;
namely, the rate of interest consistent with employment at full capacity
and inflation at its target. In this literature, Holston et al.’s (2017,
HLW henceforth) estimates of the natural rate have become particularly
influential and are widely regarded as a benchmark. In fact, the Federal
Reserve Bank of New York (FRBNY) maintains an entire webpage
dedicated to providing updates to HLW’s estimates of the natural rate,
not only for the United States (U.S.), but also for the Euro Area,
Canada and the United Kingdom (U.K.) (see https://www.newyorkfed.
org/research/policy/rstar).

In HLW’s model, the natural rate of interest is defined as the sum
of (annualized) trend growth in output and ‘other factor ’ 𝑧𝑡. This ‘ other
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factor ’ 𝑧𝑡 is meant to capture various underlying structural factors such
as savings/investment imbalances, demographic changes, and fiscal
imbalances that influence the natural rate, but which are not captured
by trend growth. In Fig. 1, I show filtered estimates of ‘other factor ’
𝑧𝑡. The dashed (blue) and solid (red) lines in Fig. 1 show estimates
obtained with data ending in 2016:Q3 and 2019:Q2, respectively. The
strong and persistent downward trending behaviour of ‘ other factor ’
𝑧𝑡 is striking from Fig. 1, particularly from 2012:Q1 onwards. The two
(black) dashed vertical lines mark the periods 2012:Q1 and 2015:Q4.
In 2015:Q4, the Federal Reserve started the tightening cycle and raised
nominal interest rates by 25 basis points. In 2012:Q1, real rates began
to rise due to a (mild) deterioration in inflation expectations. Both led
to an increase in the real rate. Yet, the estimate of ‘other factor ’ 𝑧𝑡
declined by about 50 basis points from 2012:Q1 to 2015:Q4, and then
another 50 basis points from 2015:Q4 to 2019:Q2, reaching a value
of −1.58 in 2019:Q2. Because 𝑧𝑡 evolves as a driftless random walk in
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Fig. 1. Filtered estimates of HLW’s ‘other factor’ 𝑧𝑡.
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the model, the only parameter that affects the ‘trending behaviour’ of 𝑧𝑡
is the ‘ signal-to-noise’ ratio parameter 𝜆𝑧. The size of 𝜆𝑧 thus directly
ffects the natural rate estimate, with changes in the trend in 𝑧𝑡 directly
ransferred to changes in the trend in the natural rate.

The goal of this paper is to raise a number of econometric issues
ith HLW’s model of the natural rate. More specifically, I show that

he implementation of Stock and Watson’s (1998) Median Unbiased
stimation (MUE) of the signal-to-noise ratio in Stage 2 is based on
misspecified model, which yields an excessively large estimate of 𝜆𝑧.

ince the magnitude of 𝜆𝑧 determines the severity of the downward
rend in ‘other factor ’ 𝑧𝑡, this misspecification affects the estimate of the
rend in the natural rate. Using a simulation experiment, I show that
LW’s MUE procedure in Stage 2 leads to spuriously large estimates of
𝑧 even when the true value in the data generating process is zero. The
trong and persistent downward trend in the empirical estimate of the
atural rate for the U.S. is thus spurious.

The paper also outlines five other issues with the model that are
elevant for policy analysis. These are related to: (1) the circular
elationship between the exogenously included federal funds policy
ate and the resulting estimate of the natural rate, (2) the excessive
ensitivity of the estimates to the chosen starting date used in the
stimation, (3) the specification and/or existence of ‘other factor’ 𝑧𝑡

in the model, (4) the use of filtered as opposed to smoothed states in
the visual presentation of that natural rate for policy analysis, and (5)
the ability to recover the shocks driving the natural rate, and thus the
natural rate itself.

This paper is related to, but distinct from, a broader literature on
natural rates of interest and the estimation thereof. Fiorentini et al.
(2018) examine the role of Kalman filter uncertainty on the precision of
the estimates of the components of the natural rate and show that when
the IS and/or Phillips curve parameters 𝑏𝑦 and 𝑎𝑟 (𝛾 and 𝜅 in their nota-
tion) go to zero, filter uncertainty increases. Berger and Kempa (2019)
use a Bayesian estimation approach and modify HLW’s baseline model
by allowing for time varying (stochastic) volatility. Lewis and Vazquez-
Grande (2018) assess the validity of the random walk specification of
‘other factor ’ 𝑧𝑡, while Martínez-García (2021) uses a two-country New
Keynesian model to estimate the natural rate.

The rest of the paper is organized as follows. In Section 2, the
structural model of the natural rate of interest is described, together
with Stock and Watson’s (1998) MUE, the three Stage procedure that is
implemented to estimate the model, as well as some simulation results.
In Section 3, estimates from a corrected implementation are provided.
Section 4 outlines other issues with the model that policy makers should
be aware of. Section 5 concludes the study.
2

f

2. Estimating the natural rate

This section describes HLW’s 3 Stage procedure to estimate the
natural rate. It also discusses some implications of Stock and Watson’s
(1998) Median Unbiased Estimator (MUE) and relates this back to the
implementation of MUE in Stage 2 in HLW.

2.1. HLW’s structural model

Holston, Laubach, and Williams (2017) use the following ‘structural’
odel to estimate the natural rate of interest:

Output: 𝑦𝑡 = 𝑦∗𝑡 + �̃�𝑡 (1a)

Inflation: 𝜋𝑡 = 𝑏𝜋𝜋𝑡−1 + (1 − 𝑏𝜋 )𝜋𝑡−2,4 + 𝑏𝑦�̃�𝑡−1 + 𝜀𝜋𝑡 (1b)
Output gap: �̃�𝑡 = 𝑎𝑦,1�̃�𝑡−1 + 𝑎𝑦,2�̃�𝑡−2 +

𝑎𝑟
2
[
(

𝑟𝑡−1 − 𝑟∗𝑡−1
)

+
(

𝑟𝑡−2 − 𝑟∗𝑡−2
)

] + 𝜀�̃�𝑡
(1c)

Output trend: 𝑦∗𝑡 = 𝑦∗𝑡−1 + 𝑔𝑡−1 + 𝜀𝑦
∗
𝑡 (1d)

rend growth: 𝑔𝑡 = 𝑔𝑡−1 + 𝜀𝑔𝑡 (1e)

Other factor: 𝑧𝑡 = 𝑧𝑡−1 + 𝜀𝑧𝑡 , (1f)

where 𝑦𝑡 is 100 times the (natural) log of real GDP, 𝑦∗𝑡 is the permanent
r trend component of GDP, �̃�𝑡 is its cyclical component, 𝜋𝑡 is annual-
zed quarter-on-quarter PCE inflation, and 𝜋𝑡−2,4 =

(

𝜋𝑡−2 + 𝜋𝑡−3 + 𝜋𝑡−4
)

∕
. The real interest rate 𝑟𝑡 is computed as:

𝑡 = 𝑖𝑡 − 𝜋𝑒
𝑡 , (2)

here expected inflation is constructed as:
𝑒
𝑡 = (𝜋𝑡 + 𝜋𝑡−1 + 𝜋𝑡−2 + 𝜋𝑡−3)∕4, (3)

nd 𝑖𝑡 is the exogenously determined nominal interest rate, the federal
unds rate.

The natural rate of interest 𝑟∗𝑡 is computed as the sum of (annu-
lized) trend growth 𝑔𝑡 and ‘other factor’ 𝑧𝑡, both of which are 𝐼(1)
rocesses.1 The real interest rate gap is defined as 𝑟𝑡 = (𝑟𝑡−𝑟∗𝑡 ). The error
erms 𝜀𝓁𝑡 ,∀𝓁 = {𝜋, �̃�, 𝑦∗, 𝑔, 𝑧} are assumed to be 𝑖.𝑖.𝑑 normal distributed,

1 From the description of the data, we can see that the nominal interest
ate 𝑖𝑡 as well as inflation 𝜋𝑡 are defined in annual or annualized terms,
hile output, and hence the output gap, trend and trend growth in output
re defined at a quarterly rate. Due to this measurement mismatch, trend
rowth 𝑔𝑡 is scaled by 4 to be expressed at an annualized rate whenever it
nters equations that relate it to annualized variables. The natural rate is thus

∗
actually computed as 𝑟𝑡 = 4𝑔𝑡 + 𝑧𝑡.



Economic Modelling 132 (2024) 106641D. Buncic
mutually uncorrelated, with zero means and time-invariant variances
denoted by 𝜎2𝓁 . Inflation is restricted to follow an integrated AR(4)
process.

Holston et al. (2017) argue that due to ‘pile-up’ at zero problems
with Maximum Likelihood (ML) estimation of the variances of the
innovation terms 𝜀𝑔𝑡 and 𝜀𝑧𝑡 in (1), estimates of 𝜎2𝑔 and 𝜎2𝑧 are “likely
to be biased towards zero ” (page S64). To avoid such ‘pile-up’ at
zero problems, they employ MUE of Stock and Watson (1998) in two
preliminary steps — Stage 1 and Stage 2 — to get estimates of what
they refer to as signal-to-noise ratios defined as 𝜆𝑔 = 𝜎𝑔∕𝜎𝑦∗ and 𝜆𝑧 =
𝑎𝑟𝜎𝑧∕𝜎�̃�. In Stage 3, the remaining parameters of the full model in (1)
are estimated, conditional on the median unbiased estimates �̂�𝑔 and �̂�𝑧
obtained in Stages 1 and 2, respectively. Before I describe how MUE
in Stage 2 is implemented in HLW, I summarize the main findings on
MUE from Stock and Watson (1998) in the section below.

2.2. Median unbiased estimation

Stock and Watson (1998) proposed MUE in the general setting of
Time Varying Parameter (TVP) models. TVP models are commonly
specified in a way that allows their parameters to change gradually
or smoothly over time. This is achieved by defining the parameters
to evolve as driftless random walks (RWs), with the variances of the
innovation terms in the RW equations assumed to be small. One issue
with Kalman Filter based ML estimation of such models is that estimates
of these variances can frequently ‘pile-up’ at zero when the true error
variances are ‘very’ small, but nevertheless, non-zero in population.

Stock and Watson (1998) show simulation evidence of ‘pile-up’ at
zero problems with Kalman Filter based ML estimation in Table 1 on
page 353 of their paper. In their simulation set-up, they consider the
following data generating process for the series 𝐺𝑌𝑡:

𝐺𝑌𝑡 = 𝛽𝑡 + 𝜀𝑡 (4a)

𝛽𝑡 = 𝛽𝑡−1 + (𝜆∕𝑇 )𝜂𝑡, (4b)

where 𝜀𝑡 and 𝜂𝑡 are drawn from 𝑖.𝑖.𝑑. standard normal distributions,
𝛽00 is initialized at 0, and the sample size is held fixed at 𝑇 = 500
observations, using 5000 replications. The 𝜆 values that determine
the size of the variance of 𝛥𝛽𝑡 are generated over a grid from 0 to
30, with unit increments. Four median unbiased estimators relying
on four different structural break test statistics are compared to two
ML estimators. The first ML estimator, referred to as the maximum
profile likelihood estimator (MPLE), treats the initial state vector as an
unknown parameter to be estimated. The second estimator, referred to
as maximum marginal likelihood estimator (MMLE), treats the initial
state vector as a Gaussian random variable with a given mean and
variance. When the variance of the integrated part of the initial state
vector goes to infinity, MMLE produces a likelihood with a diffuse prior.

How one treats the initial condition in the Kalman Filter recursions
matters substantially for the ‘pile-up’ at zero problem with MLE. This
fact has been known, at least, since the work of Shephard and Har-
vey (1990).2 The simulation results reported in Table 1 on page 353
in Stock and Watson (1998) show that ‘pile-up’ at zero frequencies
are considerably lower for MMLE than for MPLE, which estimates
the initial state vector. For instance, for the smallest considered non-
zero population value of 𝜆 = 1, which implies a standard deviation of
𝛥𝛽𝑡 (𝜎𝛥𝛽 henceforth) of 𝜆∕𝑇 = 1∕500 = 0.002, MMLE produces an at
most 14 percentage points higher ‘pile-up’ at zero frequency than MUE

2 On page 340, Shephard and Harvey (1990) write to this: “. . .we show
that the results for the fixed and known start-up and the diffuse prior are not too
different. However, in Section 4 we demonstrate that the sampling distribution of
the ML estimator will change dramatically when we specify a fixed but unknown
start-up procedure.” Their Tables II and III quantify how much worse the ML
estimator that attempts to estimate the initial condition in the local level model
performs compared to MLE with a diffuse prior.
3

Fig. 2. Pile-up at zero frequencies of MMLE and 4 MUEs. The 𝑥-axis values show 𝜆∕𝑇 ,
which is the representation used in HLW (i.e., 𝜆𝑧 and 𝜆𝑔 are normalized by the sample
size 𝑇 ).

(i.e., 0.60 or 60% for MMLE versus 0.46 or 46% for MUE based on
the Quandt (1960) Likelihood Ratio, henceforth QLR, structural break
test statistic). For MPLE, this frequency is 45 percentage points higher
at 0.91 (91%). At 𝜆 = 5 (𝜎𝛥𝛽 = 0.01) and 𝜆 = 10 (𝜎𝛥𝛽 = 0.02),
these differences in the ‘pile-up’ at zero frequencies reduce to 11 and 4
percentage points, respectively, for MMLE, but remain still sizeable for
MPLE. At 𝜆 = 20 (𝜎𝛥𝛽 = 0.04), the ‘pile-up’ at zero problem disappears
nearly entirely for MMLE and MUE, with ‘pile-up’ frequencies dropping
to 2 and 1 percentage points, respectively, for these two estimators,
staying somewhat higher at 7 percentage points for MPLE.

Using MUE instead of MLE to mitigate ‘pile-up’ at zero problems
comes, nevertheless, at a cost; that is, a loss in estimator efficiency
whenever 𝜆 (or 𝜎𝛥𝛽) is not very small. From Table 2 on page 353
in Stock and Watson (1998), which shows the asymptotic relative
efficiency of MUE (and MPLE) relative to MMLE, it is evident that for
true 𝜆 values of 10 or greater (𝜎𝛥𝛽 ≥ 0.02), the 4 different MUEs yield
asymptotic relative efficiencies (AREs) as low as 0.65 (see the results
under the 𝐿 and MW columns in Table 2). This means that MMLE only
needs 65% of MUE’s sample size to achieve the same efficiency. Only
for very small values of 𝜆 ≤ 4 (𝜎𝛥𝛽 ≤ 0.008) are the AREs of MUE
and MMLE of a similar magnitude, i.e., close to 1, suggesting that both
estimators achieve approximately the same precision.

The following main points are to be taken away from the above re-
view of the simulation results in Stock and Watson (1998). Since, HLW
do not estimate the initial condition of the state-vector and instead use
very tightly specified priors, the potential for a significant reduction
in the ‘pile-up’ at zero frequencies is rather limited, and depends on
the true size of 𝜆 in the data. To get an intuitive visual impression
of the ‘pile-up’ at zero probabilities, we can plot the information from
Table 1 in Stock and Watson (1998), with the 𝜆 values deflated by the
sample size 𝑇 to make them comparable to the estimates in HLW. Fig. 2
shows these ‘pile-up’ at zero frequencies (𝑦-axis), versus various 𝜆∕𝑇
values (𝑥-axis) for MMLE and the 4 different MUE estimators. The two
empirical values that HLW estimate for the U.S. in their first two stages
are 0.053 and 0.030 for 𝜆𝑔 and 𝜆𝑧, respectively (see Table 6 on page
S73 in Holston et al. (2017)). Evidently, the increase in the ‘pile-up’ at
zero probability of MMLE relative to MUE is rather small for 𝜆𝑧, and
effectively 0 for 𝜆𝑔 . Thus, given these sizeable MUE estimates of 𝜆𝑔 and
𝜆𝑧 in HLW, we can expect — a priori — the likelihood of pile-up at zero
problems materializing with MMLE to be small, therefore precluding
the need to employ MUE in the first place.
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2.3. HLW’s three stage estimation procedure

Holston et al. (2017) employ MUE in two preliminary stages that are
based on restricted versions of the full model in (1) to obtain estimates
of the ‘signal-to-noise’ ratios 𝜆𝑔 = 𝜎𝑔∕𝜎𝑦∗ and 𝜆𝑧 = 𝑎𝑟𝜎𝑧∕𝜎�̃�. These
atios are then held fixed in Stage 3 of their procedure, which produces
stimates of the remaining parameters of the model in (1).

HLW adopt the general state–space model (SSM) notation of Hamil-
on (1994) in their three stage procedure. The SSM is formulated as
ollows:3

𝐲𝑡 = 𝐀𝐱𝑡 +𝐇𝝃𝑡 + 𝝂𝑡
𝝃𝑡 = 𝐅𝝃𝑡−1 + 𝐒𝜺𝑡

, where
[

𝝂𝑡
𝜺𝑡

]

∼ 𝖬𝖭𝗈𝗋𝗆

([

𝟎
𝟎

]

,
[

𝐑 𝟎
𝟎 𝐖

])

, (5)

here I define 𝝐𝑡 = 𝐒𝜺𝑡, so that Var(𝝐𝑡) = Var(𝐒𝜺𝑡) = 𝐒𝐖𝐒′ = 𝐐 to
ake it consistent with the notation used in Holston et al. (2017). The

observed) measurement vector is denoted by 𝐲𝑡 in (5), 𝐱𝑡 is a vector of
xogenous variables, 𝝃𝑡 is the latent state vector, 𝐒 is a selection matrix.
he disturbance terms 𝝂𝑡 and 𝜺𝑡 are serially uncorrelated, and the
individual) covariance matrices 𝐑 and 𝐖 are assumed to be diagonal
atrices. The measurement vector 𝐲𝑡 in (5) is the same for all three

tages and is defined as 𝐲𝑡 = [𝑦𝑡, 𝜋𝑡]′, where 𝑦𝑡 and 𝜋𝑡 are the log
f real GDP and annualized PCE inflation, respectively, as defined in
ection 2.1.

As emphasized in the description of MUE in Section 2.2, the sim-
lation results of Stock and Watson (1998) show that ‘pile-up’ at zero
requencies for MLE are not only a function of the size of the variance of
𝛽𝑡 = (𝜆∕𝑇 )𝜂𝑡 (or alternatively 𝜆), but also depend critically on whether
he initial condition of the state vector is estimated or not. Now HLW
o not estimate the initial condition of the state vector in any of the
hree stages that are implemented. Instead, they apply the HP filter
o log GDP data with the smoothing parameter set to 36000 to get a
reliminary estimate of 𝑦∗𝑡 and trend growth 𝑔𝑡 (computed as the first
ifference of the HP filter estimate of 𝑦∗𝑡 ) using data from 1960:Q1
nwards. ‘Other factor’ 𝑧𝑡 is initialized at 0. This means that 𝝃00 has
nown and fixed quantities in all three estimation stages. Also, Holston
t al. (2017) determined the covariance matrix of the initial state vector
n a somewhat unorthodox way. Even though every element of the state
ector 𝝃𝑡 in all three estimation stages is (at least) an 𝐼(1) variable, they
o not use a diffuse prior on the state vector. Instead, the covariance
atrix is determined effectively as 0.2 times an identity matrix (for
ore details on the exact computations that are carried out by HLW

o find the initial state vector and covariance matrix, see Section 4
n Buncic (2021)).

.4. Stage 1 model

The first stage model takes the following restricted form of the full
odel presented in Eq. (1):

𝑦𝑡 = 𝑦∗𝑡 + �̃�𝑡 (6a)

𝜋𝑡 = 𝑏𝜋𝜋𝑡−1 +
(

1 − 𝑏𝜋
)

𝜋𝑡−2,4 + 𝑏𝑦�̃�𝑡−1 + 𝜀𝜋𝑡 (6b)

�̃�𝑡 = 𝑎𝑦,1�̃�𝑡−1 + 𝑎𝑦,2�̃�𝑡−2 + �̊��̃�𝑡 (6c)
∗
𝑡 = 𝑔 + 𝑦∗𝑡−1 + �̊�𝑦

∗

𝑡 , (6d)

here the vector of Stage 1 parameters to be estimated is:

1 = [𝑎𝑦,1, 𝑎𝑦,2, 𝑏𝜋 , 𝑏𝑦, 𝑔, 𝜎�̃�, 𝜎𝜋 , 𝜎𝑦∗ ]′. (7)

etails on the exact matrix SSM form are given in Appendix A.1
n Buncic (2021).

3 The state–space form that they use is described on pages 9 to 11 of their
nline appendix that is included with the R-Code HLW_Code.zip file from
illiams’ website at the New York Fed. For convenience of notation, I do not

ranspose the system matrices 𝐀 and 𝐇 in (5), as HLW do.
4

2.5. Stage 2 model

The second stage model in HLW consists of the following system of
equations, which are again a restricted version of the full model in (1)
(See Appendix A.2 in Buncic (2021) for the matrix SSM form of the
Stage 2 model and how it is re-arranged to arrive at Eq. (8) below):4

𝑦𝑡 = 𝑦∗𝑡 + �̃�𝑡 (8a)

𝜋𝑡 = 𝑏𝜋𝜋𝑡−1 +
(

1 − 𝑏𝜋
)

𝜋𝑡−2,4 + 𝑏𝑦�̃�𝑡−1 + 𝜀𝜋𝑡 (8b)

𝑎𝑦(𝐿)�̃�𝑡 = 𝑎0 +
𝑎𝑟
2 (𝑟𝑡−1 + 𝑟𝑡−2) + 𝑎𝑔𝑔𝑡−1 + �̊��̃�𝑡 (8c)

𝑦∗𝑡 = 𝑦∗𝑡−1 + 𝑔𝑡−2 + �̊�𝑦
∗

𝑡 (8d)

𝑔𝑡−1 = 𝑔𝑡−2 + 𝜀𝑔𝑡−1. (8e)

Given an estimate of 𝜆𝑔 , the vector of Stage 2 parameters to be
estimated by MLE is:

𝜽2 = [𝑎𝑦,1, 𝑎𝑦,2, 𝑎𝑟, 𝑎0, 𝑎𝑔 , 𝑏𝜋 , 𝑏𝑦, 𝜎�̃�, 𝜎𝜋 , 𝜎𝑦∗ ]′. (9)

Examining the formulation of the Stage 2 model in (8) and com-
aring it to the full model in (1), it is evident that HLW make two

misspecification’ choices that are important to highlight. First, they
nclude 𝑔𝑡−2 instead of 𝑔𝑡−1 in the trend equation in (8d), so that the
isspecified error term �̊�𝑦

∗

𝑡 is in fact:

�̊�𝑦
∗

𝑡 = 𝜀𝑦
∗

𝑡 +

𝜀𝑔𝑡−1 from (8e)
⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑔𝑡−1 − 𝑔𝑡−2

= 𝜀𝑦
∗

𝑡 + 𝜀𝑔𝑡−1. (10)

ue to the 𝜀𝑔𝑡−1 term in (10), the covariance between the two error terms
n (8d) and (8e) is no longer zero, but rather 𝜎2𝑔 . Thus, treating 𝑊 in
5) as a diagonal variance–covariance matrix in the estimation of the
econd stage model is incorrect.5

Second, HLW account for only one lag in trend growth 𝑔𝑡 and do not
mpose the 𝑎𝑔 = −4𝑎𝑟 restriction in the estimation of 𝑎𝑔 .6 Due to this,
he error term �̊��̃�𝑡 in (8c) can now be seen to consist of the following
wo components:

�̊��̃�𝑡 =

missing true model part
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
−𝑎𝑟(𝐿)4𝑔𝑡 − 𝑎𝑟(𝐿)𝑧𝑡 + 𝜀�̃�𝑡 −

added Stage 2 part
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑎0 + 𝑎𝑔𝑔𝑡−1)

= −𝑎𝑟(𝐿)𝑧𝑡 + 𝜀�̃�𝑡
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

desired terms

−
[

𝑎0 + 𝑎𝑔𝑔𝑡−1 + 𝑎𝑟(𝐿)4𝑔𝑡
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unnecessary terms

, (11)

here the ‘desired terms’ on the right-hand side of (11) are needed
or HLW’s implementation of MUE in the second stage, while the
unnecessary terms’ are purely due to the ad hoc changing of the lag
tructure on 𝑔𝑡 and failure to impose the 𝑎𝑔 = −4𝑎𝑟 restriction, as well
s the addition of an intercept term.

To be consistent with the full model specification in (1), the rela-
ions in (8c) and (8d) should have been formulated as:

𝑦(𝐿)�̃�𝑡 = 𝑎𝑟(𝐿)[𝑟𝑡 − 4𝑔𝑡] + �̊��̃�𝑡 (12a)

𝑦∗𝑡 = 𝑦∗𝑡−1 + 𝑔𝑡−1 + 𝜀𝑦
∗

𝑡 , (12b)

so that only the two missing lags of 𝑧𝑡 from (12a) appear in the error
term �̊��̃�𝑡 , specifically:

�̊��̃�𝑡 = −𝑎𝑟(𝐿)𝑧𝑡 + 𝜀�̃�𝑡 . (13)

4 I use the ring symbol ( ̊ ) on the disturbance terms in (8c) and (8d) to
distinguish them from the 𝑖.𝑖.𝑑. error terms of the full model in (1).

5 In the post COVID-19 updated version of the model in Holston et al.
(2023), they correct this part of the Stage 2 model misspecification (See
Appendix A1: State–Space Models on pages 41–42 in Holston et al. (2023)).

6 They also add an intercept term 𝑎0 to the output gap equation in (8c),

which, according to the full model specification, is superfluous.

https://www.newyorkfed.org/medialibrary/media/research/economists/williams/data/HLW_Code.zip
https://www.newyorkfed.org/research/economists/williams/pub
https://www.newyorkfed.org/
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Table 1
Summary statistics of the 𝜆𝑧 estimates obtained from applying Holston et al.’s (2017) Stage 2 MUE procedure to simulated
data.
Summary statistics (1) (2) (3) (4)

DGPs when 𝜽2 held fixed at �̂�2 DGPs when 𝜽2 is re-estimated

𝑟∗𝑡 = 4𝑔𝑡 𝑟∗𝑡 = 4𝑔𝑡 + 𝑧𝑡 𝑟∗𝑡 = 4𝑔𝑡 𝑟∗𝑡 = 4𝑔𝑡 + 𝑧𝑡
Minimum 0.000000 0.000000 0.000000 0.000000
Maximum 0.101220 0.096427 0.116886 0.116445
Standard deviation 0.016245 0.016582 0.018512 0.019647
Mean 0.028842 0.030726 0.025103 0.027462
Median 0.028394 0.029609 0.022215 0.025115
Pr(�̂�𝑠𝑧 > 0.030217) 0.457000 0.490000 0.339000 0.393000

Notes: This table reports summary statistics of the 𝜆𝑧 estimates that one obtains from implementing Holston et al.’s (2017)
Stage 2 MUE procedure on artificial data that was simulated from two different data generating processes (DGPs). The
first DGP simulates data from the full structural model in (1) under the parameter estimates of Holston et al. (2017),
but where the natural rate is determined solely by trend growth. That is, in the output gap equation in (1c), 𝑟∗𝑡 = 4𝑔𝑡.
The second DGP simulates data from the full model of Holston et al. (2017) where 𝑟∗𝑡 = 4𝑔𝑡 + 𝑧𝑡. The summary statistics
that are reported are the minimum, maximum, standard deviation, mean, median, as well as the empirical frequency of
observing a value larger than the estimate of 0.030217 obtained by Holston et al. (2017), denoted by Pr(�̂�𝑠𝑧 > 0.030217).
The table shows four different estimates, grouped in 2 block pairs. The left block under the heading ‘DGPs when 𝜽2 is
held fixed’ shows the simulation results for the two DGPs when the Stage 2 parameter vector 𝜽2 is held fixed at the
Stage 2 estimates and is not re-estimated on the simulated data. The right block under the heading ‘DGPs when 𝜽2 is
re-estimated’ shows the simulation results when 𝜽2 is re-estimated for each simulated series. Simulations are performed
on a sample size equivalent to the empirical data, with 1000 repetitions.
s
w

That is, the correctly specified Stage 2 model should have been formu-
lated as:

𝑦𝑡 = 𝑦∗𝑡 + �̃�𝑡 (14a)

𝜋𝑡 = 𝑏𝜋𝜋𝑡−1 +
(

1 − 𝑏𝜋
)

𝜋𝑡−2,4 + 𝑏𝑦�̃�𝑡−1 + 𝜀𝜋𝑡 (14b)

𝑎𝑦(𝐿)�̃�𝑡 = 𝑎𝑟(𝐿)[𝑟𝑡 − 4𝑔𝑡] + �̊��̃�𝑡 (14c)

𝑦∗𝑡 = 𝑦∗𝑡−1 + 𝑔𝑡−1 + 𝜀𝑦
∗

𝑡 (14d)

𝑔𝑡−1 = 𝑔𝑡−2 + 𝜀𝑔𝑡−1. (14e)

2.6. Simulation evidence

In Buncic (2022) (see Section 2.3) it is shown algebraically that
MUE applied to the misspecified model yields to the signal-to-noise
ratio parameter 𝜆𝑧 = 𝑎𝑟𝜎𝑧

�̄�(�̊��̃�𝑡 )
, where �̄�(⋅) denotes the long-run standard

deviation and the misspecified error term of the output-gap equation is
̊ �̃�𝑡 = 𝜀�̃�𝑡 − [𝑎0 +

(𝑎𝑔+4𝑎𝑟)
2 (𝑔𝑡−1 + 𝑔𝑡−2) +

𝑎𝑔
2 𝜀𝑔𝑡−1] in the local-level model for

Stage 2 MUE. Note that, even under the assumption of (𝑎𝑔+4𝑎𝑟) = 0, the
relation for �̊��̃�𝑡 yields the extra term 𝑎𝑔

2 𝜎𝑔 in 𝜆𝑧, giving 𝜆𝑧 =
𝑎𝑟𝜎𝑧

(𝜎�̃�+𝑎𝑔𝜎𝑔∕2)
.

This shows that MUE applied to the misspecified Stage 2 model does
not recover the signal-to-noise ratio of interest 𝜆𝑧𝜎�̃�

𝑎𝑟
as used in Stage 3

of the estimation in HLW.
In this section, I provide simulation evidence to show that MUE

as applied in HLW’s (misspecified) Stage 2 model leads to spuriously
large 𝜆𝑧 estimates when computed from simulated data generated from
a model that sets 𝜆𝑧 = 𝜎𝑧 = 0. To illustrate this, I implement two
simulation experiments. In the first experiment, I simulate data from
the full structural model in (1) using the Stage 3 parameter estimates
from HLW as the true values, but with ‘other factor ’ 𝑧𝑡 set to zero
or all 𝑡 (or alternatively, 𝜆𝑧 = 𝜎𝑧 = 0). The natural rate 𝑟∗𝑡 in the
utput gap equation in (1c) is thus solely determined by (annualized)
rend growth, that is, 𝑟∗𝑡 = 4𝑔𝑡. I then implement HLW’s Stage 2 MUE

procedure on the simulated data to yield a sequence of 𝑆 = 1000
estimates of 𝜆𝑧

(

{�̂�𝑠𝑧}
𝑆
𝑠=1

)

.
I use two different scenarios for the Stage 2 parameters 𝜃2 in the

alman Smoother recursions used to extract the latent cycle as well
s trend growth series needed for the construction of the dummy
ariable regressions used in MUE. The first scenario simply takes HLW’s
mpirical Stage 2 estimate of 𝜃2 and keeps those values fixed for all
000 generated data sequences when applying the Kalman Smoother.
n the second scenario, I re-estimate the Stage 2 model parameters for
ach simulated sequence to obtain new estimates �̂�𝑠 ,∀𝑠 = 1,… , 𝑆. I
5

2 a
then apply the Kalman Smoother using these estimates in the dummy
variable regressions.

Finally, I repeat the above computations on data that were gen-
erated from the full model in (1) with the natural rate of interest
determined by both factors, namely, 𝑟∗𝑡 = 4𝑔𝑡 + 𝑧𝑡, where 𝑧𝑡 was simu-
lated as a pure random walk, with its standard deviation set at the Stage
3 estimate of 𝜎�̃� and 𝑎𝑟, i.e., at 𝜎𝑧 = 𝜆𝑧𝜎�̃�∕𝑎𝑟 ≈ 0.15 (see row 𝜎𝑧 (implied)
of column one in Table 3). The goal here is to provide a comparison
of the range of 𝜆𝑧 estimates that can be obtained when implementing
HLW’s Stage 2 MUE procedure on data that were generate with and
without ‘other factor ’ 𝑧𝑡 in the data generating processes (DGPs) of the
natural rate.

In Table 1, summary statistics of the {�̂�𝑠𝑧}
𝑆
𝑠=1 from the two different

DGPs are reported. The left column block shows results for the two
different DGPs when the Stage 2 parameter vector 𝜃2 is held fixed at
HLW’s estimates. The right column block shows corresponding results
when 𝜃2 is re-estimated for each simulated data series. The summary
statistics are the minimum, maximum, standard deviation, mean, and
median of {�̂�𝑠𝑧}

𝑆
𝑠=1, as well as the relative frequency of obtaining a value

larger than the empirical point estimate in HLW. This point estimate
and the corresponding relative frequency are denoted by �̂�HLW𝑧 and
Pr(�̂�𝑠𝑧 > �̂�HLW𝑧 ), respectively. To complement the summary statistics
in Table 1, histograms of �̂�𝑠𝑧 are shown in Fig. 3 to provide visual
information about its sampling distribution.

From the summary statistics in Table 1 as well as the histograms
in Fig. 3 it can be seen how similar the �̂�𝑠𝑧 estimates from these two
different DGPs are. For instance, when the data were simulated without
‘other factor ’ 𝑧𝑡 (i.e., 𝜆𝑧 = 0), the sample mean of �̂�𝑠𝑧 is 0.028842. When
the data were generated from the full model with 𝑟∗𝑡 = 4𝑔𝑡 + 𝑧𝑡, the
sample mean of �̂�𝑠𝑧 is only 6.53% higher at 0.030726. Similarly, the
relative frequencies Pr(�̂�𝑠𝑧 > �̂�HLW𝑧 ) for these two DGPs are 45.70% and
49%, respectively. The inclusion of ‘other factor ’ 𝑧𝑡 in the DGP of the
natural rate thus results in only a 3.3 percentage points higher Pr(�̂�𝑠𝑧 >
�̂�HLW𝑧 ).7 The histograms in Fig. 3 paint the same overall picture. The
Stage 2 MUE implementation has difficulties to discriminate between
these two DGPs.

In a second experiment, I simulate DGPs from entirely unrelated
univariate ARMA processes to make the individual components needed

7 When the Stage 2 parameter vector 𝜽2 is re-estimated for each simulated
equence shown in the right column block in Table 1, the sample means as
ell as the relative frequency Pr(�̂�𝑠𝑧 > �̂�HLW𝑧 ) are somewhat lower at 0.025103
nd 0.027462, and 33.90% and 39.30%, respectively.
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Fig. 3. Histograms of the estimated
{

�̂�𝑠𝑧
}𝑆
𝑠=1 sequence corresponding to the summary statistics shown in Table 1. On the left and right sides of the figure, histograms for the two

different DGPs are shown. To top two histograms show the results when 𝜽2 is held fixed in the simulations and is not re-estimated, while the bottom plots show the results when
𝜽2 is re-estimated on each simulated series that is generated.
Table 2
Summary statistics of 𝜆𝑧 estimates of the Stage 2 MUE procedure applied to data simulated from unrelated univariate
ARMA processes.
Summary statistic 𝑔𝑡−1 = �̂�𝑡−1|𝑇 𝑔𝑡−1 ∼ RW 𝑔𝑡−1 ∼ WN 𝛥𝑔𝑡−1 ∼ ARMA

Minimum 0.000000 0.000000 0.000000 0.000000
Maximum 0.097019 0.095914 0.096789 0.093340
Standard deviation 0.015240 0.015858 0.016803 0.016335
Mean 0.031798 0.029708 0.026117 0.030449
Median 0.030165 0.028647 0.024254 0.029435
Pr(𝜆𝑠𝑧 > 0.030217) 0.498000 0.456000 0.384000 0.482000

Notes: This table reports summary statistics of the Stage 2 estimates of 𝜆𝑧 that one obtains when applying Holston
et al.’s (2017) MUE procedure to simulated data without the 𝑧𝑡 process. The summary statistics that are reported are the
minimum, maximum, standard deviation, mean, median, as well as the empirical frequency of observing a value larger
than the estimate of 0.030217 obtained by Holston et al. (2017), denoted by Pr(�̂�𝑠𝑧 > 0.030217). The columns show the
estimates for the four different data generating processes for trend growth 𝑔𝑡. The first column reports results when the
Kalman Smoothed estimate �̂�𝑡−1|𝑇 is used for 𝑔𝑡−1. The second and third columns show estimates when 𝑔𝑡−1 is generated as
a pure random walk (RW) or (Gaussian) white noise (WN) process. The last column reports results when 𝑔𝑡−1 is computed
as the cumulative sum of 𝛥𝑔𝑡−1, which is simulated from the coefficients obtained from a low order ARMA process fitted
to 𝛥�̂�𝑡−1|𝑇 . The cycle and real rate series are also constructed by first finding the best fitting low order ARMA processes
to the individual series and then simulating from fitted coefficients.
for the structural break regressions. To match the time series properties
of the time series that enter these regressions, I fit simple low-order
ARMA models to ̂̃𝑦𝑡|𝑇 , 𝑟𝑡 and �̂�𝑡|𝑇 , and then use these ARMA esti-
mates to simulate artificial data. I then again apply HLW’s Stage
2 MUE procedure to the simulated data as before. The full results
6

from the second experiment are reported in Table 2 and Fig. 4,
respectively.

As can be seen from the results in Table 2 and histograms in Fig. 4,
the magnitudes of �̂�𝑠𝑧 are similar to those from the first simulation ex-
periment, with mean estimates being between 0.026117 and 0.031798,
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Table 3
Stage 3 parameter estimates.

𝜽3 (1) (2) (3) (4) (5)
HLW.R-File Replicated MLE(𝜎𝑔 |𝜆HLW𝑧 ) MLE(𝜎𝑔 |𝜆

0
𝑧 ) MLE(𝜎𝑔 , 𝜎𝑧)

𝑎𝑦,1 1.52957249 1.52957247 1.49442462 1.49566712 1.49566147
𝑎𝑦,2 −0.58756415 −0.58756414 −0.55370268 −0.55448942 −0.55448212
𝑎𝑟 −0.07119569 −0.07119569 −0.07941598 −0.07525496 −0.07525240
𝑏𝜋 0.66820705 0.66820705 0.67128197 0.66919468 0.66919993
𝑏𝑦 0.07895778 0.07895778 0.07593604 0.08054901 0.08054716
𝜎�̃� 0.35346845 0.35346847 0.36043114 0.37381376 0.37382935
𝜎𝜋 0.78919487 0.78919487 0.79029982 0.78948921 0.78949094
𝜎𝑦∗ 0.57241925 0.57241924 0.55915743 0.55293818 0.55293018
𝜎𝑔 (implied) (0.03083567) (0.03083567) 0.04583852 0.04497450 0.04497414
𝜎𝑧 (implied) (0.15002080) (0.15002080) (0.13714150) (0.00374682) 0.00000001
𝜆𝑔 (implied) 0.05386904 0.05386904 (0.08197784) (0.08133730) (0.08133782)
𝜆𝑧 (implied) 0.03021722 0.03021722 0.03021722 0.00075430 (0.00000000)

Log-likelihood −515.14470528 −515.14470599 −514.83070544 −514.28987426 −514.28958969

Notes: This table reports replication results for the Stage 3 model parameter vector 𝜽3 of Holston et al. (2017). The
first column (HLW.R-File) reports estimates obtained by running Holston et al.’s (2017) R-Code for the Stage 3 model.
The second column (Replicated) shows the replicated results using the same set-up as in Holston et al. (2017). The third
column (MLE(𝜎𝑔 |𝜆HLW𝑧 )) reports estimates when 𝜎𝑔 is directly estimated by MLE together with the other parameters of
the Stage 3 model, while 𝜆𝑧 is held fixed at 𝜆HLW𝑧 = 0.030217 obtained from Holston et al.’s (2017) ‘‘misspecified’’ Stage 2
procedure. In the fourth column (MLE(𝜎𝑔 |𝜆

0
𝑧 )), 𝜎𝑔 is again estimated directly by MLE together with the other parameters

of the Stage 3 model, but with 𝜆𝑧 now fixed at 𝜆0
𝑧 = 0.000754 obtained from the ‘‘correctly specified’’ Stage 2 model in

(14). The last column (MLE(𝜎𝑔 , 𝜎𝑔 )) shows estimates when all parameters are computed by MLE. Values in round brackets
give the implied {𝜎𝑔 , 𝜎𝑧} or {𝜆𝑔 , 𝜆𝑧} values when either is fixed or estimated. The last row (Log-likelihood) reports the
value of the log-likelihood function at these parameter estimates.
Fig. 4. Histograms of the estimated {�̂�𝑠𝑧}
𝑆
𝑠=1 sequence corresponding to the summary statistics shown in Table 2.
r
H

nd relative frequencies corresponding to Pr(�̂�𝑠𝑧 > �̂�HLW𝑧 ) being between
8.40% and 49.80%. Moreover, there are many instances where the
stimates of 𝜆 from the simulated data are not only non-zero, but
7

𝑧 s
ather sizeable, being larger than the estimate of 𝜆𝑧 = 0.030217 that
LW compute from the empirical data. Note that there is no 𝑧𝑡 process

imulated, yet with HLW’s Stage 2 MUE procedure one can recover an
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estimate that is at least as large as the empirical one around 40 to 50
percent of the time, depending on how 𝑔𝑡 is simulated. This simulation
exercise highlights that HLW’s MUE procedure can lead to spuriously
large estimates of 𝜆𝑧 when the true value is 0. As the downward
rend in the 𝑧𝑡 process drives the movement in the natural rate, where
he severity of the downward trend is related to the magnitude of
𝑧 (through 𝜆𝑧), HLW’s estimates of the natural rate are likely to be
ownward biased.

. Natural rate estimates from the correct Stage 2 model

The analysis so far has shown that, due to the misspecification
n the Stage 2 model, HLW’s MUE procedure overestimates 𝜆𝑧 when

it is in fact equal to zero in the DGP. Moreover, from the results
in Buncic (2022) and Buncic (2021) it is clear that firstly, 𝜆𝑧 from

LW’s misspecified model cannot recover the signal-to-noise ratio of
nterest 𝜆𝑧 = 𝑎𝑟𝜎𝑧∕𝜎�̃�. And secondly, the Stage 1 model is not needed
or 𝜎𝑔 as its MMLE based estimate never shrinks to zero (see Figure 1
n Buncic (2022) and the discussion in Section 4.1 in Buncic (2021)).

This section provides corrected estimates of the natural rate as
ell as trend growth, ‘other factor ’ 𝑧𝑡 and the output gap from HLW’s

tructural model.8 I initially report the relevant parameter estimates in
able 3, and then plot the Kalman filtered and smoothed estimates in
ig. 5 and Fig. 6, respectively. Table 3 is structured as follows. The
olumn with the heading 𝜽3 lists the full model’s parameters 𝜽3 =
𝑎𝑦,1, 𝑎𝑦,2, 𝑎𝑟, 𝑏𝜋 , 𝑏𝑦, 𝜎�̃�, 𝜎𝜋 , 𝜎𝑦∗ ]′. Estimates of the ratios 𝜆𝑔 = 𝜎𝑔∕𝜎𝑦∗
nd 𝜆𝑧 = 𝑎𝑟𝜎𝑧∕𝜎�̃� from the previous two stages are reported in either
irect estimate form (without parenthesis) or in implied from (with
arenthesis) when estimated indirectly via MUE or backed out from the
LE estimates using the relevant ratio of interest. In columns (1) and

2) estimates obtained from HLW’s R-files and my replicated results are
eported. The signal-to-noise ratios 𝜆𝑔 and 𝜆𝑧 are computed following
he exact format of HLW. Values in parenthesis for 𝜎𝑔 and 𝜎𝑧 are the
mplied values obtained from the signal-to-noise ratios, solved for 𝜎𝑔

and 𝜎𝑧. In column (3) I report parameter estimates following the format
of HLW in Stage 2, but where the Stage 1 step is skipped and 𝜎𝑔
is estimated directly by MLE. The notation ‘MLE(𝜎𝑔|�̂�HLW𝑧 )’ signifies
this in the tables and in the plots. In column (4) the estimates from
the correctly specified Stage 2 model are shown, where 𝜎𝑔 is again
estimated directly by MLE. The notation ‘MLE(𝜎𝑔|𝜆

0
𝑧 )’ is used for that.

Lastly, pure MLE based estimates of the full structural model of HLW
are reported in column (5), using the notation MLE(𝜎𝑔 , 𝜎𝑧).

The results in Table 3 can be summarized as follows. Firstly, the
MLE of 𝜎𝑔 does not ‘pile-up’ at zero (as expected) and is approximately
50% larger than the estimate implied by the Stage 1 MUE of 𝜆𝑔 . That is,
�̂�𝑔 ≈ 0.045 in the last three columns of Table 3. The MLE of 𝜎𝑧 shrinks
numerically to zero, while the estimates of the other parameters remain
largely unchanged. Notice that the log-likelihood values of the last
three models in Table 3 are very similar, i.e., between −514.8307 and
−514.2899. Yet, the corresponding estimates of 𝜎𝑧 are either very small
at 0, or comparatively large at 0.1371 when computed (implied) from
the ‘misspecified’ Stage 2 model’s �̂�HLW𝑧 estimate. This is a discrepancy
that is unexpected from the simulation results reported in Stock and
Watson (1998). The implied �̂�𝑧 coefficient from the ‘correctly specified’
Stage 2 model shown in column (4) is 0.0037 and thereby nearly 40
times smaller than from the ‘misspecified’ Stage 2 model. The MLE of
𝜎𝑧 shown in column (5) shrinks to zero, as expected.

The findings from Table 3 are mirrored in the filtered (and smoot-
hed) estimates of 𝑟∗𝑡 , 𝑔𝑡, 𝑧𝑡 and �̃�𝑡 plotted in Fig. 5 (and Fig. 6). Note that
he ‘MLE(𝜎𝑔|𝜆

0
𝑧 )’ and ‘MLE(𝜎𝑔 , 𝜎𝑧)’ based estimates of ‘other factor ’ 𝑧𝑡

re visually indistinguishable, that is, the overlap for the entire time

8 Replication files and the factors themselves are available at https:
/github.com/4db83/Issues-with-HLWs-natural-rate-Code and https://www.
anielbuncic.com/data/correct.HLW.factors.zip, respectively.
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period, despite having different sized estimates of 𝜎𝑧 of 0.00374682
and 0.00000001. This is entirely consistent with the findings in Stock
and Watson (1998). The MUE from the correct Stage 2 specification
implies a much closer to zero estimate of ‘other factor ’ 𝑧𝑡, mirroring the
simulation based findings reported earlier. Also, and unsurprisingly, out
of the four latent state estimates, ‘other factor ’ 𝑧𝑡 is overall most strongly
affected by the two different 𝜆𝑧 (𝜎𝑧) values that are conditioned upon,
showing either vary large variability and a pronounced downward
trend in 𝑧𝑡, or being close to zero with very little variation (see panel (c)
n Fig. 5). The effect on the estimate of the natural rate is largest in the
mmediate aftermath of the global financial crisis, namely, from 2010
nwards. Interestingly, the output gap estimates shown in panel (d)
f Fig. 5 are quite similar, with the largest divergence occurring after
012. The three trend growth estimates in panel (b) of Fig. 5 where
𝑔 is estimated directly by MLE are visually indistinguishable. Trend
rowth estimated from HLW’s Stage 1 MUE of 𝜆𝑔 is larger from 2009

to 2014. The pure backward looking nature of the Kalman Filtered 𝑔𝑡
series exacerbates the effect of the decline in GDP during the financial
crisis on the trend growth estimates after the crisis.

In support of the earlier results on the misspecification in the Stage 2
model of HLW and its effect on 𝜆𝑧, I re-estimate HLW’s model with data
ending in 2019:Q2. Estimation results, together with corresponding
plots of filtered (and smoothed) estimates are reported in Table 4, Fig. 7
and Fig. 8, respectively. The objective of re-estimating the model on
updated data and reporting the results here is to provide additional
evidence that 𝜆𝑧 computed from HLW’s misspecified Stage 2 model
cannot be correct with regards to its magnitude. The ML estimates
shown in column (5) of Table 3 give a prime example of the ‘pile-
up’ at zero problem with MLE. In column (5) of Table 4 we see that
̂𝑧 estimated by MLE does not shrink to zero in the extended sample
period. In fact, the point estimate is comparable in magnitude to the
one obtained from the correctly specified Stage 2 model MUE. That
is, they are 0.05250494 and 0.06065982, respectively, while the MUE
from HLW’s implementation yields the much larger (implied) �̂�𝑧 of
0.15642060. This provides extra empirical evidence that the Stage 2
MUE procedure of HLW leads to spuriously large estimates of 𝜆𝑧.

4. Other issues with HLW’s structural model

This section raises five other issues with HLW’s structural model
when aimed for policy analysis. These are structured around: (1) re-
verse causality (in the structural model at least), that is, the nominal
fed funds target rate 𝑖𝑡 is driving the movements of the natural rate,
not the other way around, (2) excessive sensitivity of the estimates to
the chosen sample starting date, (3) what is an appropriate process
for other factor 𝑧𝑡, (4) should the focus be on smoothed or filtered
estimates of the latent states, and (5) can we recover the shocks driving
the natural rate and therefore the natural rate itself?

4.1. Reverse causality: the policy rate is driving the natural rate

In HLW’s model, the policy rate 𝑖𝑡 is included as an exogenous
variable. With 𝑟∗𝑡 = 4𝑔𝑡 + 𝑧𝑡, and ‘other factor ’ 𝑧𝑡 the free variable due
to 𝑔𝑡 being driven by GDP growth, 𝑧𝑡 effectively matches the leftover
movements in the interest rate to make it compatible with trend growth
in the model. Since the central bank has full control over the policy
rate, it can set 𝑖𝑡 to any desired level, and the model will produce a
natural rate through ‘other factor ’ 𝑧𝑡 that will match it. Further, there
is nothing in the structural model of (1) that makes the system stable.
For the output gap relation in (1c) to be stationary, the real rate cycle
𝑟𝑡 = 𝑟𝑡−𝑟∗𝑡 = (𝑖𝑡−𝜋𝑒

𝑡 )−(4𝑔𝑡+𝑧𝑡) must be 𝐼(0), yet there is no co-integrating
relation imposed anywhere in the system to ensure that this holds in
the model.9

9 This insight is not new and has been discussed in, for instance, Pagan
nd Wickens (2019) (see pages 21 − 23). When trying to simulate from such

https://github.com/4db83/Issues-with-HLWs-natural-rate-Code
https://github.com/4db83/Issues-with-HLWs-natural-rate-Code
https://www.danielbuncic.com/data/correct.HLW.factors.zip
https://www.danielbuncic.com/data/correct.HLW.factors.zip
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Fig. 5. Filtered estimates of the natural rate 𝑟∗𝑡 , annualized trend growth 𝑔𝑡, ‘other factor’ 𝑧𝑡, and the output gap (cycle) variable �̃�𝑡.
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Fig. 6. Smoothed estimates of the natural rate 𝑟∗𝑡 , annualized trend growth 𝑔𝑡, ‘other factor’ 𝑧𝑡, and the output gap (cycle) variable �̃�𝑡.
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Fig. 7. Filtered estimates of the natural rate 𝑟∗𝑡 , annualized trend growth 𝑔𝑡, ‘other factor’ 𝑧𝑡, and the output gap (cycle) variable �̃�𝑡 up to 2019:Q2.
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Fig. 8. Smoothed estimates of the natural rate 𝑟∗𝑡 , annualized trend growth 𝑔𝑡, ‘other factor’ 𝑧𝑡, and the output gap (cycle) variable �̃�𝑡 up to 2019:Q2.
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Table 4
Stage 3 parameter estimates using data up to 2019:Q2.

𝜽3 (1) (2) (3) (4) (5)
HLW.R-File Replicated MLE(𝜎𝑔 |𝜆HLW𝑧 ) MLE(𝜎𝑔 |𝜆

0
𝑧 ) MLE(𝜎𝑔 , 𝜎𝑧)

𝑎𝑦,1 1.53876458 1.53876459 1.51083223 1.51659115 1.51669620
𝑎𝑦,2 −0.59700264 −0.59700265 −0.57053684 −0.57637540 −0.57645931
𝑎𝑟 −0.06854043 −0.06854043 −0.07561113 −0.07029671 −0.07000675
𝑏𝜋 0.67331545 0.67331545 0.67638900 0.67463450 0.67483411
𝑏𝑦 0.07755450 0.07755451 0.07454055 0.07888427 0.07885243
𝜎�̃� 0.33590693 0.33590692 0.33598381 0.34747670 0.34826106
𝜎𝜋 0.78812554 0.78812554 0.78921814 0.78854952 0.78862036
𝜎𝑦∗ 0.57577319 0.57577320 0.56789520 0.56359236 0.56327803
𝜎𝑔 (implied) (0.03082331) (0.03082331) 0.04517849 0.04386169 0.04378982
𝜎𝑧 (implied) (0.17251762) (0.17251762) 0.15642060 0.06065982 0.05250494
𝜆𝑔 (implied) 0.05353377 0.05353377 (0.07955428) (0.07782519) (0.07774103)
𝜆𝑧 (implied) 0.03520151 0.03520151 (0.03520151) (0.01227186) (0.01055443)

Log-likelihood −533.36984524 −533.36984550 −533.16547501 −532.82874860 −532.82637541

Notes: This table reports replication results for the Stage 3 model parameter vector 𝜽3 of Holston et al. (2017). The
first column (HLW.R-File) reports estimates obtained by running Holston et al.’s (2017) R-Code for the Stage 3 model.
The second column (Replicated) shows the replicated results using the same set-up as in Holston et al. (2017). The third
column (MLE(𝜎𝑔 |𝜆HLW𝑧 )) reports estimates when 𝜎𝑔 is directly estimated by MLE together with the other parameters of
the Stage 3 model, while 𝜆𝑧 is held fixed at 𝜆HLW𝑧 = 0.035202 obtained from Holston et al.’s (2017) ‘‘misspecified’’ Stage 2
procedure. In the fourth column (MLE(𝜎𝑔 |𝜆

0
𝑧 )), 𝜎𝑔 is again estimated directly by MLE together with the other parameters

of the Stage 3 model, but with 𝜆𝑧 now fixed at 𝜆0
𝑧 = 0.012272 obtained from the ‘‘correctly specified’’ Stage 2 model in

(14). The last column (MLE(𝜎𝑔 , 𝜎𝑔 )) shows estimates when all parameters are computed by MLE. Values in round brackets
give the implied {𝜎𝑔 , 𝜎𝑧} or {𝜆𝑔 , 𝜆𝑧} values when either is fixed or estimated. The last row (Log-likelihood) reports the
value of the log-likelihood function at these parameter estimates.
Kalman filter based estimates of the state vector 𝜉𝑡 will be (weighted
ombinations of the) one-sided moving averages of the three observed
ariables that enter the state–space model; namely, 𝑖𝑡, 𝑦𝑡, and 𝜋𝑡. This
an be seen by writing out the Kalman Filtered estimate of the state
ector as:

̂ 𝑡|𝑡 = �̂�𝑡|𝑡−1 + 𝐏𝑡|𝑡−1𝐇′(𝐇𝐏′
𝑡|𝑡−1𝐇

′ + 𝐑)−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐆𝑡

(𝐲𝑡 − 𝐀𝐱𝑡 −𝐇�̂�𝑡|𝑡−1)

= �̂�𝑡|𝑡−1 +𝐆𝑡(𝐲𝑡 − 𝐀𝐱𝑡 −𝐇�̂�𝑡|𝑡−1)

= (𝐈 −𝐆𝑡𝐇)�̂�𝑡|𝑡−1 +𝐆𝑡(𝐲𝑡 − 𝐀𝐱𝑡)
= (𝐈 −𝐆𝑡𝐇)𝐅
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Φ𝑡

�̂�𝑡−1|𝑡−1 +𝐆𝑡 (𝐲𝑡 − 𝐀𝐱𝑡)
⏟⏞⏞⏟⏞⏞⏟

�̄�𝑡

= Φ𝑡�̂�𝑡−1|𝑡−1 +𝐆𝑡�̄�𝑡,

which is a (linear) recursion in �̂�𝑡|𝑡 and can thus be rewritten as:

�̂�𝑡|𝑡 = 𝜳 𝑡𝝃0|0 +
𝑡−1
∑

𝑖=0
𝜳 𝑖𝐆𝑡−𝑖
⏟⏟⏟

𝝎𝑡𝑖

�̄�𝑡−𝑖

= 𝜳 𝑡𝝃0|0 +
𝑡−1
∑

𝑖=0
𝝎𝑡𝑖�̄�𝑡−𝑖, (15)

where 𝛹𝑖 =
∏𝑖−1

𝑛=0 𝛷𝑡−𝑛,∀𝑖 = 1, 2,…, 𝛹0 = 𝐼 , 𝐼 is the identity matrix,
�̂�𝑡|𝑡−1 = 𝐹 �̂�𝑡−1|𝑡−1 is the predicted state vector, 𝜉0|0 is the prior mean,
𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1|𝑡−1𝐹 + 𝑄 is the predicted state variance, 𝜔𝑡𝑖 = 𝛹𝑖𝐺𝑡−𝑖 is
a time varying weight matrix, and �̄�𝑡 is a (2 × 1) vector containing the
observed variables 𝑦𝑡, 𝜋𝑡, and 𝑖𝑡.

As the nominal interest rate 𝑖𝑡 is contained in �̄�𝑡 in (15) and is
directly controlled by the central bank, a circular relationship can be
seen to evolve. Any central bank induced change in the policy rate
𝑖𝑡 is mechanically transferred to the natural rate 𝑟∗𝑡 via the Kalman
Filtered estimate of the state vector �̂�𝑡|𝑡 in (15). This confounds the
relationship between 𝑟∗𝑡 and 𝑖𝑡, making it impossible to address causal
policy questions of interest such as: “Is the natural rate low because 𝑖𝑡

a model, with 𝜋𝑡 being integrated of order 1, the simulated paths of the real
rate 𝑟𝑡 = 𝑖𝑡 −𝜋𝑒

𝑡 can frequently diverge to very large values, even with samples
of size 𝑇 = 229 observations (the empirical sample size).
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is low, or is 𝑖𝑡 low because the natural rate is low?”, as one follows as a
direct consequence from the other (in this model).

4.2. Excessive sensitivity to the chosen sample starting date

Because of the one-sided moving average nature of the Kalman
Filtered estimates of the state vector, any outliers, structural breaks
or otherwise extreme observations at the beginning (or end) of the
sample period can have a strong impact on these filtered estimates.
For the (two-sided) Hodrick and Prescott (1997) filter, such problems
(and other ones) are well known and have been discussed extensively
in the literature. Kalman Filter based (one-sided) estimates will also
be affected. A simple way to appreciate this is by re-estimating the
HLW model using four different starting dates, while keeping the end
of the sample period the same at 2019:Q2. In Fig. 9 I show filtered
estimates of 𝑟∗𝑡 , 𝑔𝑡, 𝑧𝑡 and �̃�𝑡 for the four starting dates 1967:Q1,
1972:Q1, 1952:Q2 and 1947:Q1 (smoothed estimates are shown in
Fig. 10), together with HLW’s estimates using 1961:Q1 as the starting
date.10

Why did I choose these starting dates? The period following the
April 1960 to February 1961 recession was marked by temporarily (and
unusually) high GDP growth, yielding an annualized mean of 6.07%
(median 6.47%), with a low standard deviation of 2.67% from 1961:Q2
to 1966:Q1. Having such excessive growth at the beginning of the
sample period has an unduly strong impact on the filtered (less so on
the smoothed) estimate of trend growth 𝑔𝑡 in the model. Since both 𝑔𝑡
and 𝑧𝑡 enter the natural rate, this affects the estimate of 𝑟∗𝑡 . To illustrate
the sensitivity of these estimates to this time period, I estimate the
model with data starting 6 years later in 1967:Q1. Also, HLW’s Euro
Area estimates of 𝑟∗𝑡 are negative from around 2013 onwards (see the
bottom panel of Figure 3 on page S63 of their paper). To show that
one can get the same negative estimates of 𝑟∗𝑡 for the U.S., I estimate
the model with data starting in 1972:Q1 to match the sample period
used for the Euro Area. Lastly, I extend HLW’s data back to 1947:Q1
to have estimates from a very long sample, using total PCE inflation
prior to 1959:Q2 in place of Core PCE inflation and the Federal Reserve
Bank of New York discount rate from 1965:Q1 back to 1947:Q1 as a

10 In all computations, I use HLW’s R-Code and follow exactly their three
stage procedure as before to estimate the factors of interest.



Economic Modelling 132 (2024) 106641

14

D. Buncic

Fig. 9. Filtered estimates of annualized trend growth 𝑔𝑡, ‘other factor’ 𝑧𝑡 and the natural rate 𝑟∗𝑡 based on different starting dates.
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Fig. 10. Smoothed estimates of annualized trend growth 𝑔𝑡, ‘other factor’ 𝑧𝑡 and the natural rate 𝑟∗𝑡 based on different starting dates.
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proxy for the Federal Funds rate, as was done in Laubach and Williams
(2003). Since inflation was rather volatile from 1947 to 1952, I also
estimate the model with data beginning in 1952:Q2 to exclude this
volatile inflation period from the sample.

Panel (a) in Fig. 9 shows how sensitive the natural rate estimates
to the different starting dates are, particularly at the beginning of
HLW’s sample, namely, from 1961 until about 1980, and at the end
of the sample from 2009 onwards. Negative natural rate estimates are
now also obtained for the U.S. when the sample starts in 1972:Q1 (or
1967:Q1). From panel (b) in Fig. 9 it is evident that the filtered trend
growth estimates are the primary driver of the excessive sensitivity in 𝑟∗𝑡
ver the 1961 to 1980 period. For instance, in 1961:Q1, these estimates
an be as high as 6 percent, or as low as 3 percent, depending on
he starting date of the sample. Also, the differences in the estimates
tay sizeable until 1972:Q1, before converging to more comparable
agnitudes from approximately 1981 onwards. Apart from the estimate
sing the very long sample beginning in 1947:Q1 (see the blue line in
anel (b) of Fig. 9), the other four series remain surprisingly similar,
ven during and after the financial crisis period, that is, from mid
007 to the end of the sample in 2019:Q2. Thus, the variability of the
atural rate estimates at the beginning of the sample are driven by the
ariability in the estimates of trend growth 𝑔𝑡 at the beginning of the

sample.
In panel (b) of Fig. 9, I add trend growth estimates computed

from Stock and Watson’s (1998) model and also an Unobserved Com-
ponent (UC) model in the spirit of Clark (1987) and Stock and Watson
(1988) to provide long-sample benchmarks of trend growth from simple
univariate models to HLW’s estimates. Comparing the Kalman Filter
based estimates from the various starting dates to the (smoothed)
MUE, MMLE, and UC ones shows how different these are, particularly,
from 2009:Q3 until the end of the sample. In the immediate post-
crisis period, the (one-sided) filter based estimates are pulled down
excessively by the sharp decline in GDP and converge only slowly
at the very end of the sample period towards the three long-sample
benchmarks. Trend growth is severely underestimated from 2009:Q3
onwards, and this affects the estimate of 𝑟∗𝑡 .

Looking at the estimates of ‘other factor ’ 𝑧𝑡 in panel (c) of Fig. 9,
we can see that it is the end of the sample, namely, from 2009:Q1 to
2019:Q2, that is most strongly affected by the different starting dates.
In particular the two estimates that are based on the shorter samples
starting in 1967:Q1 and 1972:Q1, which exclude the excessive GDP
growth period at the beginning of HLW’s sample, generate substantially
more negative 𝑧𝑡 estimates. For instance, in 2009:Q1, the 1972:Q1
based estimate is −2.87 while HLW’s is −1.22. Also, the 𝑧𝑡 estimates
from the shorter samples are well below −2 over nearly the entire
2014:Q4 to 2019:Q2 period.11 What is particularly surprising to observe
here is how stable (and very close to zero) the estimates of 𝑧𝑡 from the
our earlier sample starts are from 1947:Q1 until about 1971:Q3. Given
he change in demographics and population growth, as well as factors
elated to savings and investment following the end of World War II,
ne would expect 𝑧𝑡 to reflect these changes. It is only from 1990:Q2
nwards that a decisive downward trend in 𝑧𝑡 becomes visible.

HLW initialize the state vector for the 𝑧𝑡 elements of 𝜉𝑡 at zero. This
choice leads to an anchoring effect and implies that the natural rate
is driven solely by trend growth at the beginning of the sample. In
the data, it acts as a normalization. Since 𝑧𝑡 is specified to evolve as a
driftless random walk, an initialization at zero seems sensible from an
econometric perspective. Nevertheless, if one is to view ‘other factor ’ 𝑧𝑡
as a factor which is meant to capture underlying structural changes
in demographics, saving and investment rates and the likes, in the
economy, it needs to be aligned with such trends in the empirical data
of the economy that is modelled. That is, the normalization date needs

11 This is even more pronounced in the smoothed estimates of 𝑧𝑡 shown in
panel (c) of Fig. 10.
16
to be justified from an economic perspective. Due to its large impact on
the downward trend in the estimates of the natural rate, understanding
how the zero initialization affects the estimates and what exactly 𝑧𝑡
captures is crucial from a policy perspective.

4.3. What is an appropriate process for ‘other factor’ 𝑧𝑡?

‘Other factor ’ 𝑧𝑡 is specified as a driftless random walk in HLW and
one might ask whether the estimate of 𝜎𝑧 shrinks towards zero because
of the way it has been formulated. My conjecture is that the empirical
data reject the 𝐼(1) restriction on ‘other factor ’ 𝑧𝑡.12 To investigate if
the 𝑧𝑡 series indeed follows an 𝐼(1) process, we can examine the time
series properties of the difference between the observed GDP growth
series 𝛥𝑦𝑡 and the real rate 𝑟𝑡, that is, the (𝛥𝑦𝑡 − 𝑟𝑡) series. From HLW’s
structural model in (1) we know that:

𝑟𝑡 = 𝑟∗𝑡 + 𝑟𝑡
= 𝑔𝑡 + 𝑧𝑡 + 𝑟𝑡

= 𝑔𝑡−1 + 𝜀𝑔𝑡 + 𝑧𝑡 + 𝑟𝑡, (16)

where 𝑟𝑡 is the real rate gap defined earlier, which must be an 𝐼(0)
process for the output gap equation to be stationary. From the relations
in (1a) and (1d) we then obtain

𝛥𝑦𝑡 = 𝑔𝑡−1 + 𝜀𝑦
∗

𝑡 + 𝛥�̃�𝑡, (17)

so that the difference between real GDP growth 𝛥𝑦𝑡 in (17) and the real
rate in (16) is:

(𝛥𝑦𝑡 − 𝑟𝑡) = (𝑔𝑡−1 + 𝜀𝑦
∗

𝑡 + 𝛥�̃�𝑡) − (𝑔𝑡−1 + 𝜀𝑔𝑡 + 𝑧𝑡 + 𝑟𝑡)

= 𝛥�̃�𝑡 − 𝑟𝑡 + 𝜀𝑦
∗

𝑡 − 𝜀𝑔𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

stationary ARMA

− 𝑧𝑡, (18)

where the variables in the first block on the right hand side of (18)
will be the sum of two stationary ARMA terms (the two gaps) and two
uncorrelated error terms (𝜀𝑦

∗

𝑡 and 𝜀𝑔𝑡 ), while 𝑧𝑡 is 𝐼(1). In the model we
thus have that (𝛥𝑦𝑡 − 𝑟𝑡) is 𝐼(1).

In Fig. 11 I show time series plots of 𝛥𝑦𝑡 with 𝑟𝑡 superimposed in
Panel (a) in the top of the figure. The GDP growth minus real rate series
(𝛥𝑦𝑡−𝑟𝑡) is plotted in Panel (b), with the autocorrelation function (ACF)
and partial autocorrelation function (PACF) plots of (𝛥𝑦𝑡 − 𝑟𝑡) in Panel
(c) in the bottom. Both, the time series plot in Panel (b) as well as
the ACF and PACF plots in Panel (c) give the visual impression of a
stationary (𝛥𝑦𝑡 − 𝑟𝑡) series, with a fast decaying correlation structure.
The first order autocorrelation coefficient is 0.576. More formal unit-
root tests confirm that the null hypothesis of a unit-root in (𝛥𝑦𝑡 − 𝑟𝑡)
is strongly rejected.13 Either ‘other factor ’ 𝑧𝑡 is stationary, or it does
not appear in (𝛥𝑦𝑡 − 𝑟𝑡) at all, which is only possible if 𝜎𝑧 is zero.
This supports the estimation results obtained from MLE and the correct
Stage 2 model’s MUE. From Panel (a) in Fig. 11 it is also visible that the
real rate remained well below real GDP growth for an extended period
of time in the aftermath of the financial crisis; arguably, the longest
stretch in the sample, with only the period following the Dotcom bubble
showing some similarities.

12 Lewis and Vazquez-Grande (2018) look at the likelihood of the 𝑧𝑡 process
to follow a unit-root process and find overwhelming evidence against this (see
in particular Figure 4 on page 433 of their paper).

13 Augmented Dickey–Fuller and Elliott et al. (1996) DF-GLS 𝑃𝑇 and 𝑡− tests
ield test statistics of −5.33, 0.58, and −5.30, which are all substantially lower
than their respective 1% critical values of −3.46, 1.92, and −2.58.
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Fig. 11. Time series and autocorrelation plots of real GDP growth and the real interest rate.
4.4. To filter or to smooth?

HLW’s seem to prefer to report filtered (as opposed to smoothed)
estimates of the latent state variables (both in the paper as well as
on the FRBNY website). This is rather surprising, as it is well known
that the mean squared error (MSE) of the filtered states is in general
larger than from the smoothed ones (see the discussion on page 151
in Harvey (1989)). That is, the smoother is the more accurate estimator
of the latent state vector. The greater variability in the filtered states is
visible from the estimates of 𝑟∗, 𝑔 and 𝑧 , and less so from the output
17

𝑡 𝑡 𝑡
gap (cycle) estimates. While it is sometimes stated that filtered states
are real-time estimates, and are thus more relevant for policy analysis,
one can see that this is a straw-man argument here. Not only are the
parameter estimates of the model, i.e., the �̂�3 in Table 3, based on
full sample information, the GDP and PCE inflation data are not real
time data, that is, data that were available to policy makers at time
𝑡 < 𝑇 . Reporting filtered (one-sided) estimates of the states as in HLW
(or on the FRBNY website) gives a misleading visual impression of the
magnitude of the natural rate and trend growth, which are important

variables in the policy decision making process.
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4.5. Can we recover the shocks driving the natural rate?

A final point to consider when using HLW’s model for policy anal-
ysis is the issue of shock recovery in state–space models when there
are more shocks than observables in a dynamic system with latent
variables. A key finding from the recent theoretical literature on shock
recovery is that it is never possible to recover all the shocks from
uch a system (see Chahrour and Jurado (2022), Pagan and Robinson
2022), and Forni et al. (2019)). In HLW’s model, there are five shocks
nd only two observable variables (namely, inflation and GDP growth)
hat enter the observed measurement variable 𝐲𝑡 in (5).14 In Buncic

and Pagan (2022) and Buncic et al. (2023) it is shown that the shock
belonging to ‘other factor ’ 𝑧𝑡 and trend growth 𝑔𝑡 cannot be recovered
from HLW’s model. In fact, the Kalman smoothed estimates of the
change in the natural rate, that is, 𝛥𝑟∗𝑡 , can be equally well represented
y the following two identities:

𝑇 𝛥𝑟
∗
𝑡 = 4𝐸𝑇 𝜀

𝑔
𝑡 + 𝐸𝑇 𝜀

𝑧
𝑡 (19)

𝑇 𝛥𝑟
∗
𝑡 = 𝐸𝑇 𝛥𝑟

∗
𝑡−1 − 0.0495𝜀�̃�𝑡 + 0.0003𝐸𝑇 𝜀

𝜋
𝑡 − 0.0037𝐸𝑇 𝜀

𝑦∗
𝑡 (20)

+ 0.0231𝐸𝑇 𝜀
�̃�
𝑡−1 − 0.0078𝐸𝑇 𝜀

𝑦∗
𝑡 ,

here the relation in (19) follows directly from the definition of the
atural rate, and the dynamic relation in (20) involves the smoothed
emand, inflation, and technology (or trend) shocks. Evidently, having
wo such identities makes it impossible to disentangle the nature of the
hocks driving the (growth rate of the) natural rate.

. Conclusion

This paper raises a number of econometric issues in the estimation
f the natural rate of interest. More specifically, this paper shows that
LW’s Stage 2 model is misspecified. Using a simulation experiment, I

how that this misspecification leads to an excessively large estimate of
he signal-to-noise ratio that drives the downward trend in the natural
ate when applied to data generated from a model where the true value
s zero. Correcting the misspecification results in a substantially smaller
oint estimate of the signal-to-noise ratio parameter, and thereby a
ore subdued trend in ‘other factor ’ 𝑧𝑡 and the natural rate.

The paper also discusses various other problems that make the
odel unsuitable for policy analysis. For instance, estimates of the nat-
ral rate are extremely sensitive to the starting date of the sample used
o fit the model. Using a sample that begins in 1972:Q1 (or 1967:Q1)
eads to negative estimates of the natural rate for the U.S. These
egative estimates are again driven by the exaggerated downward
rending behaviour of ‘ other factor ’ 𝑧𝑡. Moreover, due to the Kalman
iltered (or Smoothed) estimates of the state vector being a function
f all observable variables that enter into the model, any central bank
nduced change in the policy rate 𝑖𝑡 is mechanically transferred to the

natural rate 𝑟∗𝑡 . This makes it impossible to answer causal questions
regarding the relationship between 𝑟∗𝑡 and 𝑖𝑡, as one responds to changes
n the other. Lastly, due to the excess number of shocks in the model
elative to the number of observables, shock recovery and hence natural
ate recovery is problematic. This implies that it will not be possible to
dentify which shocks are driving the natural rate, as there exist (at
east) two identities that equally well describe the evolution.
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14 The nominal interest rate enters as an exogenous variable, thus does not
dd information to the state–space model.
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