Getting Started in R

S.A. Bashir

February 26, 2003

Copyright (©) 2003 S. A. Bashir

Permission is granted to make and distribute copies of this manual provided the copy-
right notice and this permission are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by S. A. Bashir.

CONTENTS i

Contents
1 Introduction 2
1.1 Whatis R? 2
1.2 Rand Splus 2
1.3 Starting and quitting Ro 2
1.4 On-lineHelp 3
1.4.1 Help Examples 3
1.4.2 Exercise 4
1.5 General commentso Lo 4
1.5.1 Case Sensitivity L 4
1.5.2 R Commands, 4
1.5.3 Recalling previous commands 5
2 Maths in R 5
2.1 Simple arithmetic o oo 5
2.1.1 Exercise 6
2.2 Storing values Lo 6
2.3 Logical Values. 7
2.4 Managing Objects L 8
3 Vectors 8
3.1 Creating Simple Vectors, 9
3.2 Sequences . . .o ... 9
3.3 Generating Sequences e 9
3.3.1 Regular Sequenceso 9
3.3.2 Random Sequences oo 10
3.3.3 Exercises 12
3.4 Vector Arithmetic 12
3.5 Extracting Elements of a Vector 13
3.6 Negative Numbers L 14
3.7 Logical Subscripts L Lo 14
3.8 More Functions L Lo 15
3.9 Missing Values oo 17

CONTENTS

3.10 Exerciseo e

4 Matrices
4.1 Matrix assignments and constructiono

4.2 Matrix Arithmetic

5 Data frames

5.1 Reading data from files
5.2 Some notes on data frames L.
5.3 Writingdatatoafile. L.
5.4 Factors. e

5.4.1 Generating factor variables

6 Scripts and Functions

6.1 Scripts
6.2 Functions e
6.2.1 Exercise

7 Statistical Analysis

7.1 Simple Linear Regression

8 Graphics
8.1 Demonstrationo
8.2 Simple Example o

8.3 Exerciseso

CONTENTS 1

Preface

This “Getting Started in R” is aimed at absolute beginners in R with some basic
statistical understanding. The idea is to read and follow the examples by typing them
in an interactive R session. There are some exercises along the way to aid learning
but I would recommend that the user experiment with commands by, for example,
trying different options to those stated. This experimentation is an important part of
learning R using this manual.

This guide does not aim to give detailed technical description of the workings of R or
the logic behind it. There is plenty of other literature that already does that. It is
hands-on approach to learning R.

If you would like some further reading or information, the R website has an up to date
list of references. The website address is:

WWW.r-project.org

If you have any comments please let me know.
Saghir Bashir (saghir@sbtc.1ltd.uk)

The latest version of this document can be found on:

www.sbtc.ltd.uk/freenotes.html

Font Conventions

These course notes use the following typographical conventions:

Constant width to show the text to be typed, output from commands or the
contents of files.

Acknowledgments

These notes started life as an introduction to Splus and were at the time based on,
with permission, some notes by Barry Rowlingson. I am grateful to Barry for his
permission.

I would like to acknowledge the R Development Core Team for their hard work in
producing R.

1 INTRODUCTION 2

1 Introduction

1.1 What is R?

R is an programming environment for data analysis, calculation and graphics. In
summary it’s main features are

e data handling and storage facility

operators for matrix (and array) manipulation

data analysis tools

graphical facilities

e a programming language

1.2 R and Splus

For the purpose of this manual R and Splus should work in an identical way.

1.3 Starting and quitting R

To start R in the the Windows environment double click on the R icon. A new screen
will appear containing one window (which lists information about the version number,
license and getting started). The last line to appear will be >’ a standard prompt to
indicate that R is expecting a command.

R : Copyright 2001, The R Development Core Team
Version 1.3.0 (2001-06-22)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.

Type ‘license()’ or ‘licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ‘contributors()’ for more information.

Type ‘demo()’ for some demos, ‘help()’ for on-line help, or

‘help.start()’ for a HTML browser interface to help.
Type ‘q()’ to quit R.

To quit R, type q() followed by enter at the prompt:

> q0

1 INTRODUCTION 3

A prompt asking whether to Save workspace will appear. Answering Yes will save all
objects (variables) that were created during the session. Next time R is started from
the same directory, the saved objects will be available for use. For the purposes of this
course it is best not to save workspace to prevent confusing objects between sessions.

1.4 On-line Help

The on-line help gives useful information. Getting used to using it and understanding
the help will make it easier to use R. The on-line help can be accessed in HTML format

by typing:
> help.start()

A keyword search is possible using the Search Engine and Keywords link.

There is text help from within R using the function help() or 7. For example, the
following two commands result in the same thing.

> help(t.test)
> 7t.test

To do a keyword search use the function apropos(). For example:

> apropos("test")
[1] "chisq.test" ‘"print.htest" "prop.test" "t.test"

Note that you need to put the keyword in double quotes (¢ ‘keyword’?).

1.4.1 Help Examples

To run the examples at the end of the help for a function, use the example () function.
For example:

> example(t.test)
t.test> t.test(1:10, y = c(7:20))
Welch Two Sample t-test

data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05

alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-11.052802 -4.947198

sample estimates:
mean of x mean of y

5.5 13.5

1 INTRODUCTION 4

t.test> t.test(1:10, y = c(7:20, 200))
Welch Two Sample t-test

data: 1:10 and c(7:20, 200)
t = -1.6329, df = 14.165, p-value = 0.1245
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-47.242900 6.376233
sample estimates:
mean of x mean of y
5.50000 25.93333

1.4.2 Exercise

Use the help system to find help on the following topics:

1. Analysis of Variance (ANVOA)
2. Trigonometric Functions (e.g., cos)
3. Mean and median

4. Generalised Linear Models

1.5 General comments
1.5.1 Case Sensitivity

R is case sensitive. D and d are different symbols and refer to different variables.
Similary sag, Sag and SAG refer to three different variables.

1.5.2 R Commands

R commands are separated by a semi-colon (‘;’) or by a newline. To put comments
in your code use a hash (‘#’) and everything from the hash to the end of the line will
be regarded as a comment.

If a command is not complete at the end of a line then R will issue the following
prompt (by default):

on second and subsequent lines until the command syntax is correct. To break out
this, type CTRL + c (press the Control Key and ‘C’ at the same time).

2 MATHS IN R)

1.5.3 Recalling previous commands

To recall a previously typed commands use the up arrow key (7). To go between
previously typed commands use the up and down arrow () keys. Once a command is
recalled, it can be modified/corrected using the left («—) and right arrow keys (—).

2 Maths in R

In this section R will be used to do simple arithematic.

2.1 Simple arithmetic

Whatever is typed at the prompt is evaluated, and the result is printed.

> 243 # Addition

[1] 5 # Answer labelled with [1]

> 2%4 + 7 # Multiplication and addition
[1] 15 # Multiplication first

> 10/3 # Division

[1] 3.333333

> 772 # Squaring ...

[1] 49

> B5**3 # **x to the power of...
[1] 125

> 573 # or we can use ~

[1] 125

> (66-12)/4 - 7%(84/12-3) # more complicated...
(1] -17

Standard functions that are found on a scientific calculator are available in R, for
example:

> sqrt(2) # Square root
[1] 1.414214

> 5in(3.14159) # sin(Pi radians) is zero
[1] 2.65359e-06 # and this is close...

It also provides pi (7) as a constant.

> sin(pi)
[1] 1.224606e-16 # much closer to zero...

2 MATHS IN R 6

Here is a short list of some of the arithmetic functions in Splus:

Name Operation

sqrt square root

abs absolute value

sin cos tan trigonometric functions (radians)
asin acos atan inverse trigonometric functions
sinh cosh tanh hyperbolic functions

asinh acosh atanh inverse hyperbolic functions

exp log exponential and natural logarithm
logl0 common logarithm

gamma lgamma gamma function and its natural log

These functions can be nested and combined to make more complex expressions:

> sqrt(sin(45*pi/180))
[1] 0.8408964

2.1.1 Exercise

Calculate the following in Splus

1. (123 —45)/4 +4 x (72/2.34 — 3)

[\

. 10ge(72)

- 10g10(72)

4. e — 2612

w

5. cos(%)

2.2 Storing values

A value can be stored in a named variable by assigning it with the <- or _ (underscore)
symbols, for example:

>x <=5 # assigns 5 to x

> x # type x to print it’s value

(1] 5

>y _ sqrt(9) # assign the square-root of 9 to y
>y

(1] 3

In fact you can make assignments using ->, for example:

2 MATHS IN R 7

>7 > z # assigns 7 to z
> z
(11 7

This could be interpreted as z is assigned 7.

Now it is possible to do arithmetic with x, y and z, for example:

>(x*y)+z
[1] 22

>y’'x-z+6
[1] 242

> w <= Xty
> w
[1] 8

Notice that if you type an assignment it does not print anything, but if you just type
an expression the result is printed.

Variable names must start with a letter, and may contain letters, numbers and dots.
Upper and lower case are different.

Vv

abc <- 123 #
Abc <- 456 # abc, Abc and ABC are different.
ABC <- 789 #

vV VvV

> abc
[1] 123
> Abc
[2] 456
> ABC
[1] 789

> abc.de2 <- 543 # dot notation and numbers in a variable name.
> abc.de2
[1] 543

4abc <- 98 # variable names cannot start with a number.
Error: syntax error

2.3 Logical Values

R enables computation with Boolean, or Logical variables. These take on either the
value True or False. You can use conditional tests to generate these values:

> x <- 32

3 VECTORS 8

>x > 16 # Is x greater than 167

(11 T # Yes it is (True).

> x <= 16 # Is x less than equal to 167
(11 F # No it is not (False).

Logical values can be stored in variables in the same way as numeric values:

> tf <- x>16
> tf
(11T

2.4 Managing Objects

To list the objects (e.g., variables, data, functions) that you have created simply type
1s(). For example

> height <- 1.78

> weight <- 83

> age <- 26

> job <- "Builder"

> 1s()

[1] "age" "height" "job" "weight"

To search for objects which contain given characters, use the pattern option (abbre-
viated to pat).

> 1s(pat="h")
[1] "height" "weight"

To restrict the search to objects that start with this character, type:

> 1s(pat=""h")
[1] "height"

To delete an object use the rm() functions.
> rm(age)

> 1s()
[1] "height" "job" "weight"

3 Vectors

All the values presented so far have been scalars. R can handle vectors which are a
combination of scalars in a single structure.

3 VECTORS 9

3.1 Creating Simple Vectors

To create a simple vector, use the c() (combine function) function. Try
> x <- ¢(2,4,6,10,11) A sequence of numbers.

> X To see the outcome...
[11] 2 4 6 10 11

3.2 Sequences

You can use the notation #1:#2 to generate a vector that consist of a sequence where
#1 and #2 are two integer numbers.

> xv <- 1:10

> XV

[1] 1 2 3 4 5 6 7 8 9 10
> yv <- 40:1
> yv

[1] 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
[16] 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11
[31] 10 9 8 7 6 5 4 3 2 1

The last example (yv) shows that is a vector is too long for one line it simply continues
on the following line (using as many lines as are necessary). Further in the square
brackets it shows the position at which that line begins (e.g., [16] mean that the first
values on this line is the sixteenth one).

3.3 Generating Sequences
3.3.1 Regular Sequences

R can be used to generate vectors sequences. Simple regular sequences have already
been presented above and are generally of the form:

> 1:12

[1] 1 2 3 4 5 6 7 8 9 10 11 12
> 10:1

[1] 10 9 8 7 6 5 4 3 2 1
> 4:18

[1] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
To generate a sequence of repeating sequences use the rep() functions, for example:
> rl <- rep(c(1:4), 3)

>rl
[1] 123412341234

3 VECTORS 10

> r2 <- rep(c(1.2, 6.1, 3.2, 5.5), 2)
> r2
[1] 1.2 6.1 3.2 5.51.26.13.25.5

The first sequence repeat 1, 2, 3, 4 3 times. The second sequence repeats a list of
numbers (1.2, 6.1, 3.2, 5.5) twice.

To generate a sequence of real numbers use the function seq(), for example:

> seq(4, 6, .25) # from 4 to 6 by increments of 0.25.
[1] 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

The following examples produces the same sequence

> seq(length=9, from=4, to=6)
[1] 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00
> seq(from=4, to=6, by=0.25)
[1] 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

To understand the seq() function type the following:

> seq(7)

[11 1234567

> seq(7, 10)

(11 7 8 9 10

> seq(7, 10, 0.5)

[1] 7.0 7.5 8.0 8.5 9.0 9.5 10.0
> 7seq

> rep(seq(l, 3, 0.4), 2) # Combining rep() and seq()
[1] 1.0 1.4 1.82.22.63.01.01.41.82.22.6 3.0

3.3.2 Random Sequences

R can generate a random sequence from a number of probability density functions. The
general format for generating such sequences is: rdensity(num, pl, p2, ...) where
density is the probability density function, num is the number of values to generate
and pl, p2, ... are the values needed to generate from the density function.

To generate a 40 values from a Guassian (Normal) distribution with mean 6 and
standard deviation 2.3, type

> normal40 _ rnorm(40, 6, 2.3)

> normal40

[1] 6.834486 2.448428 9.872630 6.843854 3.523625 5.836164
[7] 2.467408 4.031621 7.117638 4.505798 1.992775 2.245854
[13] 6.500079 10.027989 11.256062 6.790967 7.470746 6.410076

3 VECTORS 11

[19] 6.319011 9.647313 2.671094 7.659652 7.523609 4.191818
[25] 3.786023 4.156107 5.677170 3.828295 5.112820 7.847509
[31] 5.939255 7.163945 4.771867 7.406695 3.807607 3.809296
[37] 3.097054 7.163667 7.019444 8.740871

The vector normal40 can be used as data in R, for example,

> mean(normal40)

[1] 5.837908

> sd(normal40)

[1] 2.343080

> summary(normal40)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.993 3.824 6.129 5.838 7.225 11.260

Some examples of generating random sequences from other distributions are presented
below:

> rpois(20, lambda=5) # Poisson(5)
[1] 86 433543290485258516

> rbinom(20, size=18, prob=0.3) # Binomial(18, 0.3)
[1] 447 1654554584775 2845

> runif (20, min=3, max=6) # Uniform(3, 6)
[1] 4.149455 3.575531 3.501311 3.815135 3.525723 4.858564
[7] 3.827195 3.360773 5.460830 5.724241 3.817351 5.755735
[13] 4.232872 4.367516 5.110012 3.960176 3.340431 4.707575
[19] 5.616004 4.341320

> rexp(20, rate=1.5) # Exponential(1.5)
[1] 0.61952785 0.92581617 0.85785772 0.53322649 0.37195255
[6] 0.84596779 0.38540842 0.27079439 0.05713503 0.92850265
[11] 0.23248135 0.46429596 0.12284165 0.61804739 0.14611095
[16] 1.13248605 1.15375220 0.73407235 0.04107131 0.54812605

The function sample() generates random permutations of data or a random sample
from a given vector. The first arguement is a vector or a positive integer and the
second the size of the sample. For example:

> sample(12) # Sampling without replacement.
[1] 9 5 6 3 7 1 2 81011 4 12

> sample(12, 5) # Sampling 5 values without replacement.
[1] 10 12 6 3 5

> sample(12, replace=TRUE) # Sampling with replacement.
(1] 11 8 61210 4 5 8 4 5 1 1

3 VECTORS 12

> sample(12, 8, replace=TRUE)
+ # Sampling 8 values with replacement.
(1] 6 3 7 9 5 810 7

> sample(c("Heads", "Tails"), 6, replace=TRUE)
+ # Simulating 6 coin tosses.
[1] "Heads" "Heads" "Tails" "Heads" "Tails" "Heads"

3.3.3 Exercises

1. Generate the following sequences

[1] 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0
(1] 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0

2. Generate 80 values from a standard normal distribution.
3. Generate 100 values from a binomial distribution of size 23 and probability 0.25.

4. Generate 100 values from a log normal distribution with mean 12 and standard
deviation 2.

3.4 Vector Arithmetic

We can manipulate vectors in a similar manner to scalars. However care must be take
when doing such things as the results may not be the desired ones.

> x <- 12:1 # x is a sequence
> x
(1] 121110 9 8 7 6 5 4 3 2 1
> x*2 # multiply x by 2 ...
[1] 24 22 20 18 16 14 12 10 8 6 4 2
> X*X # square X.

[1] 144 121 100 81 64 49 36 25 16 9 4 1

If the vectors are of different length we can get some strange answers for example try
the following:

> x <- 1:10
>y <= ¢c(1,3)
>x*y

[1] 1 6 312 518 7 24 9 30

Here Splus has repeated y five times and then multiplied by x

x |1 2 3 45 6 7 8 9 10
y |1 31 31 31 3 1 3
xxy|l 6 3 12 5 18 7 24 9 30

3 VECTORS 13

In this example the length of y is a factor of the length of x (type length(x) and
length(y)). However if it is not a factor then a warning message is issued as follows:

> x <- 1:10
>y <- c(1,2,3)
>xX+y

Warning in x + y : longer object length
is not a multiple of shorter object length
(1] 2 4 6 5 7 9 810 12 11

Note that the operation has been completed (see the line after x + y. Can you see
what has happened?

Logical operations on a vector produce a vector of True and False values, for example

>x >5
[FFFFFTTTTT

3.5 Extracting Elements of a Vector

If we are interested in only extracting a subset of the vector then we can do this using
square brackets [J.

> x <- c(1:10)*2

> X
(1] 2 4 6 8 10 12 14 16 18 20
> x[6] # extracting the 6th value...
[1] 12 # which is 12
> x[2:6] # extracting values 2 through 6 inclusive.

(1] 4 6 8 10 12

> x[c(1,7,9)] # extracting the 1st, 7th and 9th values.
[1] 2 14 18

>y <= x[c(1,5,8)] # assigning a subset of x to y.

>y
[11 2 10 16

Here are some examples to try

> x[9:6] # reverse order...
[1] 18 16 14 12

> x[c(1:3, 8:10)] # two distinct ranges...
[1] 2 4 6 16 18 20

3 VECTORS 14

> x[c(1,2,3,1,2,3,1,2,3,1,2,3)] # repetition of the index...
[11 246246246246

> x[c(8,2,5,10)] # any order you please....
(1] 16 4 10 20

As mentioned above you can assign subsets to a vector

>y <= x[c(1:4,3,9)]
>y
[1] 2 4 6 8 6 18

3.6 Negative Numbers

If you use a negative subscript in you selection procedure, the corresponding numbered
element is not included in the return vector.

> x <- ¢(3,6,9,12,15,18,21)
> X
[1] 3 6 912 15 18 21

> x[-4] # exclude the 4th element...
[1] 3 6 9 15 18 21

> x[c(-4,-6)] # exclude 4th and 6th elements...
[1] 3 6 9 15 21

If you try to mix negative and positive numbers then you get the following error

> x[c(3,-4)]
Error: only 0’s may mix with negative subscripts

3.7 Logical Subscripts

Logical values can be used as subscripts. A True value selects that element, and a
False value does not select it:

> x <- 1:10
> x
[1] 1 2 3 4 5 6 7 8 9 10

> gth <- x> 5
> gth
[1] F F F F F T T T T T

> x[gt5]
(1] 6 7 8 9 10

3 VECTORS 15

This can all be done in one line, however:

> x[x > 5]
[1] 6 7 8 9 10

This looks a bit strange to most people at first, seeing x inside a subscript of itself,
but when you remember that x > 5 is just a vector of True and False, it starts to
make sense.

3.8 More Functions

There are functions that operate on vectors and return useful information:

> x <- 5:14

> length(x) # Number of elements in x

[1] 10

> max(x) # Largest value in x

[1] 14

> min(x) # Smallest value in x

[1] 5

> sum(x) # Sum of all the values in x

[1] 95

> prod(x) # The product of all the values in x

[1] 3632428800

> mean(x) # The mean of the all values in x
[1] 14.5

> range (x) # Range of vector x

[1] 5 14

> var(x) # The variance of x

[1] 35

> sd(x) # The standard deviation of x

[1] 3.027650

**

> sqrt(var(x)) The square root of the variance (sd)

[1] 3.027650

Notice that range(x) produces a vector of length two, whereas the other functions
produce a scalar. Arithmetic operations on logical values work with True being equal

3 VECTORS

16

to one, and False being equal to zero. You can count the number of True values in a

vector by using sum(x)

> x <= 1:10
> x>7

[1] FFFFFFFTTT

> sum(x>7)
[1] 3

This tells us there are three values in the vector x that are greater than 7.

The following functions action on the whole vector.

>y <- c(-3.72, 11.56, 14.57, 19.65, -4.41, 15.41,

+ 25.79, 6.21, 9.84,

> round(y, 1)

12.92)

Round y to one decimal place.

[1] -3.7 11.6 14.6 19.6 -4.4 15.4 25.8 6.2 9.8 12.9

> trunc(y)

[1] -3 11 14 19 -4

> ceiling(y)

[1] -3 12 15 20 -4

> rev(y)

[1] 12.92 9.84 6.

> sort(y)

[1] -4.41 -3.72 6.

> rev(sort(y))

[1] 25.79 19.65 15.

> rank(y)
(11 2 5 7 9

> cumsum(y)

1

Take the integer part of y.
15 26 6 9 12

Round up to the nearest integer.
16 26 7 10 13

Reverse the order of y.
21 25.79 15.41 -4.41 19.65 14.57 11.56 -3.72

Sort y in increasing order.
21 9.84 11.56 12.92 14.57 15.41 19.65 25.79

Sort y in decreasing order.
41 14.57 12.92 11.56 9.84 6.21 -3.72 -4.41

Rank elements of y.
810 3 4 6

Calculate the cumulative sum of y.

[1] -3.72 7.84 22.41 42.06 37.65 53.06 78.85
[8] 85.06 94.90 107.82

> cumprod (y)

Calculate the cumulative product of y.

[1] -3.720000e+00 -4.300320e+01 -6.265566e+02 -1.231184e+04

[5] 5.429520e+04
[9] 1.318567e+09

8.366891e+05 2.157821e+07 1.340007e+08

1.703588e+10

3 VECTORS 17

3.9 Missing Values
Missing values are coded as NA in R. For example,
> missx <- c(2, 5, 7, NA, 4, 5, 2)

> missx
[1] 2 5 7NA 4 5 2

> missx[2]
[1] 5

> missx[4]
[1] NA

The fourth element of missx is missing. Statistical functions will return a missing
value (NA) if a vector contains any missing values. To overcome this we have to use
the na.rm=T option.

> median(missx)

[1] NA

> median(missx, na.rm=T)

[1] 4.5

> min(missx)

[1] NA

> min(missx, na.rm=T)

(1] 2

Try the same for other statitical functions, e.g., mean(), var (), prod(), etc.

3.10 Exercise
1. Create the following vector sequences:

1 4 7 10 13 16 19 22 25 28
1.01.21.41.61.82.01.01.21.41.61.82.0
10.0 9.5 9.0 8.5 8.0 7.5 7.0
1414141414141414
4141414141414141

1 4 9 16 25 36 49 64 81 100

1 4 916 25 6 14 24 36 50

4 MATRICES 18

A O

10.

11.

12.

For each of the sequences above calculate the mean, median, variance and the
range.

Generate 15 values from a uniform distribution between 0.7 and 1.
Generate 15 values from a uniform distribution between 0 and 0.3.
Generate 28 values from a uniform distribution between 1.5 and 7.5.

Generate 15 values from a uniform distribution between 0 and 1. Sort these val-
ues in increasing order and then generate a vector with the cumulative product.

Using the functions runif () and trunc() simulate 20 die throws.

. Generate 30 values from a Normal distribution with mean 3.4 and variance 5.25

rounded to 2 decimal places. Calculate the median, range, and the upper and
lower quartiles.

. Generate 30 values from a Poisson distribution with lambda 5.

Generate 20 values from a Binomial distribution of size 15 and probability of
success 0.3.

Generate a randomisation list of size 150 for three treatment groups “Placebo”,
“Drug A” and “Drug B”.

Generate 100 values from a standard normal distribution and count the number
of values greater than 1.96. Extract these into a vector called signif.100. Do the
same again but this time generate 2000 values.

4 Matrices

Splus lets you store data in a two-dimensional matrix. You use the matrix function:

> x <- matrix(c(2,3,5,7,11,13) ,ncol=2)

> X

(.11 [,2]
2 7
3 11
5 13

You give matrix a vector of the values, and you need to specify either ncol or nrow to
tell the function the size of the matrix.

Can you see the labels on the matrix rows and columns? These are like the labels you
see when printing a vector. They also tell us how to extract parts of a matrix. You
use square brackets with two comma-separated values:

> x[2,1] # One element of x
(1] 3
> x[2,2] # Another element

(1] 11

4 MATRICES 19

If you leave out one number, you get the whole row or column:

> x[,1] # The first column
[1] 2 35

> x[3,] # The third row
[1] 5 13

Notice that returning a single row or column produces a vector. You can extract
sub-matrices from a matrix by specifying a vector as one of the indices:

> x[2:3,] Rows 2 and 3
[,11 [,2]
[1,] 3 11
[2,] 5 13 labels start at 1 again

You can specify a vector for the rows and columns subscripts to get a piece of the
original matrix:

> x <- matrix(1:16,ncol=4)

> X
[,11 [,21 [,31 [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> x[c(1,4),c(3,4)] Rows 1 and 4,
[,1]1 [,2] Cols 3 and 4

[1,] 9 13

[2,] 12 16

If you can understand that example, then you understand the concepts of matrix in
Splus.

4.1 Matrix assignments and construction

By using subscripts you can change values in a matrix:
> mx <- matrix(seq(0, 95, length=20), ncol=5)

> mx # Dbefore...
[,11 [,2] [,3] [,4] [,5]
[1,] 0O 20 40 60 80
[2,] 5 25 45 65 85
(3,] 10 30 50 70 90
[4,] 15 35 55 75 95

4 MATRICES 20

> mx [3,1] <- -12

> mx # ... after
> mx

[,11 [,21 (,3] [,4] [,5]
[1,] 0 20 40 60 80
[2,] 5 25 45 65 85
[3,] -12 30 50 70 90
(4,] 15 35 55 75 95

You can replace whole rows or columns too:

> mx[,2] <- c(3, 6, 9, 12)
> mx

[,11 [,21 [,3] [,4] [,5]
[1,] 0 3 40 60 80
[2,] 5 6 45 65 85
[3,] -12 9 50 70 90
(4,] 15 12 55 75 95
> mx[4,] <- c(-1, -2, -3, -4, -5)
> mx

[,11 [,21 (,3] [,4]1 [,5]
[1,] 0 3 40 60 80
[2,] 5 6 45 65 85
[3,] -12 9 50 70 90
4,7 -1 -2 -3 -4 -5

As with vector arithmetic, the assigned value is repeated to fill out the matrix section
if it is not long enough:

> mx[,1] <- c(0.5, 0.9)
> mx

[,11 [,21 [,3] [,4] [,5]
[1,] 0.5 3 40 60 80
[2,] 0.9 6 45 65 85
[3,] 0.5 9 50 70 90
4,] 0.9 -2 -3 -4 -5

Extra rows and columns can be added to a matrix using the rbind() and cbind ()
functions. These add extra rows and columns respectively:

> cbind(mx, c(0.1, 0.2, 0.3, 0.4)) # Add an extra column.
[,11 [,2] [,31 [,4]1 [,5] [,6]

[1,] 0.5 3 40 60 80 0.1

[2,] 0.9 6 45 65 85 0.2

[3,] 0.5 9 50 70 90 0.3

[4,] 0.9 -2 -3 -4 -5 0.4

4 MATRICES 21

> rbind(mx,)

> rbind(mx, 100:104) # Add a an extra row.
[,11 [,21 [,3] [,4] [,5]

[1,] 0.5 3 40 60 80

[2,] 0.9 6 45 65 85

[3,] 0.5 9 50 70 90

[4,] 0.9 -2 -3 -4 -5

[65,] 100.0 101 102 103 104

> cbind (mx,mx) # Add the matrix to itself (column wise).
(,11 [,2] [,3] [,4] [,5] [,6] [,71 [,8] [,9] [,10]

[1,] 0.5 3 40 60 80 0.5 3 40 60 80

(2,1 0.9 6 45 65 85 0.9 6 45 65 85

[3,] 0.5 9 50 70 90 0.5 9 50 70 90

4,1 0.9 -2 -3 -4 -5 0.9 -2 -3 -4 -5

> rbind(mx, mx) # Add the matrix to itslef (row wise).

(,11 [,2] [,3]1 [,4] [,5]
[1,J 0.5 3 40 60 80

[2,1] 0.9 6 45 65 85
[3,] 0.5 9 50 70 90
(4,] 0.9 -2 -3 -4 -5
[5,] 0.5 3 40 60 80
6,1 0.9 6 45 65 85
[7,] 0.5 9 50 70 90
[8,] 0.9 -2 -3 -4 -5

You can add rows or columns to the middle of a matrix with clever use of subscripts
and rbind() or cbind(), respectively:

> cbind(mx[,1:3], c(91,92,93,94), mx[,4])
[,11 [,21 [,3] [,4] [,5]

[1,] 0.5 3 40 91 60

(2,1 0.9 6 45 92 65

[3,] 0.5 9 50 93 70

[4,] 0.9 -2 -3 94 -4

The function t() tranposes a matrix (switched the rows and columns).

[,11 [,21 [,3] [,4] [,5]
[1,] 0.5 3 40 60 80
[2,] 0.9 6 45 65 85
[3,] 0.5 9 50 70 90
4,] 0.9 -2 -3 -4 -5
> t(mx)

[,11 [,2] [,3] [,4]
[1,] 0.5 0.9 0.5 0.9

4 MATRICES 22

[2,] 3.0 6.0 9.0 -2.0
[3,] 40.0 45.0 50.0 -3.0
[4,] 60.0 65.0 70.0 -4.0
[5,] 80.0 85.0 90.0 -5.0

4.2 Matrix Arithmetic

Functions on matrices work the same as on vectors, in general. They work on each
element in turn. This includes the multiplication operator a * b which multiplies each
element of a with the corresponding element of b. To do proper matrix multiplica-
tion, use a %*’% b. The matrices must have the correct dimensions to be multiplied
together.

> my <- matrix(rep(1l,4), ncol=2)
> my
(.11 [,2]
[1,] 1 1
[2,] 1 1

> mz <- matrix(1:6, ncol=2)
> mz
[,11 [,2]
[1,] 1 4
[2,1] 2 5
(3,1] 3 6

> mz %*% my
[,11 [,2]
[1,] 5 5
[2,] 7 7
[3,1] 9 9

The size of a matrix is returned by the dim() function:

> dim(mx)
[1] 4 5 # number of rows then the number of columns.

The inverse of a matrix is computed by the solve() function. The matrix must be
square and not singular:

> x <- matrix(0:3,ncol=2)

> x # make a square matrix
[,11 [,2]

[1,] 0 2

[2,] 1 3

> solve(x) # whats the inverse?

(.11 [,2]

5 DATA FRAMES

[1,1 -1.5 1
[2,] 0.5 0
> x %*Y solve(x)
[,11 [,2]
[1,] 1 0
[2,1] 0 1

5 Data frames

test: x * inv(x) =1

2x2 Identity

23

A data frame is very much like a matrix, except it is designed for storing statistical
or experimental data. Each row represents a unit, and each column a collection of
measurements on the units. Each column can store a different type of data, such as

numeric or character. The columns can also have names much like a list.

5.1 Reading data from files

So far, all data has been entered in R using the keyboard or generated using R func-
tions. In reality, data is usually too large to type in and held in files. The function

read.table() is used to read a file into a data frame.

It will look at the file and

determine if the data are numeric or character, and will also check for the presence of
labels above the columns.

The file teachers.dat contains the following data:

age sex children salary weight height

a7
48
40
61
41
35
57
54
51
43
50
53
53
55
45
57
50
46
44
56

Note that the first line has the names of the variables.

Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Male
Female
Female
Female
Female
Female
Female
Female
Female
Female

0

GO W NWWNEFE, WEFL OO 0K, NEFENO B -

34377
14502
24899
52168
40344
30512
31845
30447
51862
29632
25663
31956
44864
30301
33190
49778
31546
30157
36358
37554

94
79
88
79
88
94
85
90
88
90
89
83
66
64
72
88
75
65
72
72

1.

I e e e e e T e T e T o e e e e S e e S

72
.86
.49
.80
.84
.68
.70
.54
.71
.84
.82
.57
.45
.47
.54
.38
.47
.60
.59
.49

5 DATA FRAMES 24

To read in this data type the follow:
> teachers <- read.table("teachers.dat", header=T, as.is=T)

The argument as.is=T stops R from trying to convert character data to factor objects
(see Section 5.4). Without this argument, the sex column would be a factor with two
levels (i.e., “Male” and “Female”). The arguement header=T informs R that the first
line of the data file contains the names of the variables.

To look at the data we have just read in:

> teachers$age
[1] 47 48 40 61 41 35 57 54 51 43 50 53 53 55 45 57 50 46 44 56

> teachers$sex
NULL

> teachers$gender
[1] "Male" "Male" "Male" "Male" "Male" "Male"
[7] "Male" "Male" "Male" "Male" "Male" "Female"
[13] "Female" "Female" "Female" "Female" "Female" "Female"
[19] "Female" "Female"

> teachers

age sex children salary weight height
1 47 Male 0 34377 94 1.72
2 48 Male 1 14502 79 1.86
3 40 Male 4 24899 88 1.49

. Output omitted ...

The names of variables in a data frame can be changed by typing:

> names (teachers) # Before
[1] "age" "sex" "children" "salary" "weight"
[6] "height"

> names (teachers) <- c("age", "gender", "children", "income",
+ "weight", "height")

> names(teachers) # After
[1] "age" "gender" "children" "income" "weight"
[6] "height"

5.2 Some notes on data frames

To use variables in a data frame we have been using the form teachers$varname.
By using the function attach() we can refer to the variables by name. The function
detach undoes the attach().

5 DATA FRAMES 25

> teachers$weight
[1] ||94ll "79" ll88" ||79Il "88" ll94|| ||85II "90" Il88|| ll90ll ||89ll II83II
[13] II66II Il64l| ll72|l ||88ll I|75|| ll65|| ||72ll "72“
> weight
Error: Object "weight" not found

> attach(teachers) # Attach the data frame.

> weight # Typing the variable name will now work...
[1] II94II II79|| ll88|l |I79ll II88|| ll94|| ||85ll "90" ll88|| l|90ll ||89ll ll83||

[13] ||66ll II64|| Il72|l ||88ll H75Il ll65|| ||72Il II72II

> teachers$weight # So does the old format.
[1] ||94ll "79" ll88" ||79Il "88" ll94|| ||85II I'90ll Il88|| "90" ||89ll II83II
[13] II66II Il64l| ll72|l ||88ll 1175" ll65|| ||72ll "72"

> detach(teachers) # Detach the data frame.
> weight # No longer works.
Error: Object "weight" not found

To check whether or not an object is a data frame we used the is.data.frame()
function:

> is.data.frame(teachers)
[1] TRUE

> data <- cbind(c(1:10), rnorm(10))

> data

[,1] [,2]
[1,] 1 0.54280499
[2,] 2 -0.01827376
(3,] 3 0.75249857
(4,] 4 0.82214771
[5,] 5 -0.96701648
(6,] 6 -1.22995568
[(7,] 7 1.01985401
(8,] 8 -1.93996275
[9,] 9 1.00902315

[10,] 10 -0.87872980
> is.data.frame(data)
[1] FALSE

If the function returns TRUE then it is a data frame.

5.3 Writing data to a file

The function write.table() writes data to a file, for example:

demog <- cbind(teachers$age, teachers$weight, teachers$height)

5 DATA FRAMES 26

> write.table(demog, "demog.dat")

writes the data in demog to the file demog.dat.

5.4 Factors

Factors are category objects (R’s way of storing categorical variables). Suppose you
have an experiment with six subjects, some of which are given treatment “a”’, some
treatment “b”, and some treatment “c”. To store this information you can create a
factor object:

> treat <- factor(c(’a’,’b’,’b’,’c’,’a’,’b?))
> treat

[1] abbcab

Levels: a b c

Here the factor function has converted the character vector into a factor object. The
resulting print of treat may look like a character object, but it is not. Notice that
there are no quote marks around the letters. Compare with:

> treat.char <- c(’a’,’b’,’b’,’c’,’a’,’b?)
> treat.char
[1] IIall llbll ||bl| IICII ||all llbll

You can get a vector of the different categories in a factor with the levels function:

> levels(treat)
[1] ||a|| nbn IICII

This gives us a list of the unique categories in the factor.

Suppose we have the responses to the experiment in a vector:

> response <- ¢(10,3,7,6,4,5)
> rbind(treat, response)

(,11 [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 2 3 1 2
[2,] 10 3 7 6 4 5

Note that treat is coded as 1, 2 and 3 for treatment levels a, b and c, respectively.

We can then find the responses for a particular treatment by subscripting:

> response[treat=="a"]
[1] 10 4
> response[treat=="b"]
[11 375

5 DATA FRAMES 27

Sometimes the levels of factors will have a natural ordering that we would want to
make use of in statistical analysis. The function ordered() creates such ordered
factors. These are identical to factor with the exception that the ordered factors are
printed in the order of levels. Factors are printed in alphabetical order. When fitting
linear models the contrasts used are different (always make sure you understand what
constracts are being used).

5.4.1 Generating factor variables

The function gl() is used to generate regular series of factor variables. The best
description is in the help. Type:

> 7gl
Generate Factor Levels
gl(n, k, length = n¥k, labels=1:n, ordered=FALSE)
Value:

This function generates ‘factor’s by specifying the
pattern of their levels. The result has levels from
‘1> to ‘n’ with each value replicated in groups of
length ‘k’ out to a total length of ‘length’. Labels
for the resulting factor levels can be optionally spec-
ified with the arguments ‘labels’ and the factor levels
can be made ordered by specifying ‘ordered=TRUE’. ‘gl’
is modelled on the GLIM function of the same name.

See Also:

the underlying ‘factor(.)’.
Examples:

First control, then treatment:

gl(2,8, label=c("Ctnrl","Treat"))
20 alternating 1s and 2s

gl(2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)

> # Run the examples to see what happens.
> example(gl)

Try the following and observe what happens.

> gl(4, 3)

6 SCRIPTS AND FUNCTIONS 28

[1]1 111222333444
Levels: 1 2 3 4

> gl(4, 2, 16)
[1] 11 22334411223344
Levels: 1 2 3 4

> gl(4, 1, 16)
[1] 1234123412341234
Levels: 1 2 3 4

> gl(4, 1, 8, label=c("None", "Low", "Medium", "High"))
[1] None Low Medium High None Low Medium High
Levels: None Low Medium High

1. The function expand.grid() creates a data.frame with all combination of a
list of factors. Create a data.frame called trial with all combinations of the
following factors:

e treatment with levels “Placebo” and “Drug”.
e sex with levels “Male” and “Female”.

e weeks with 12 levels.
Hint: Use the help() and example() functions.

2. Add a column called outcome to trial with values generated from a normal
distrubtion with mean 17 and standard deviation 4.3.

3. Calculate the mean, median, standard deviation and the interquartile range by
treatment and by sex.

4. Calculate the mean, median, standard deviation and the interquartile range by
treatment and sex. Hint: Use function tapply ().

6 Scripts and Functions

6.1 Scripts

If you have a particularly complicated piece of R code, and you do not want to have
to type it all in again if you make a mistake (for example, the long-winded version
of the t-test code), you can put all the lines in a file and read it in with the source
function.

Edit a file called dmean.R which contains the following lines:

x1 <- rnorm(100)
ml <- mean(x1l)
x2 <- rnorm(100)

6 SCRIPTS AND FUNCTIONS 29

m2 <- mean(x2)
dm <- abs(ml-m2)

Now in R type source("dmean.R"):

> source("dmean.R")
> dm
[1] 0.01060566

The source function reads in the file and executes the lines within in the same way as
if they had been typed at the keyboard. After running you will see that it has created
x1, x2, m1 , m2 and dm. Type:

> 1s()
[1] ||dH-UI "m1|| llm2 n ||lel "X1|| IIX2 n

6.2 Functions

If you find you have a process that you use a lot, perhaps one that calls several R
functions, you can write your own function to do it.

We will write function to calculate the geometric mean. Type the following into a file
called gmean.R.

gmean <- function(x){
geometric mean calculation
prodx <- prod(x)
n <- length(x)
gm <- prodx**(1/n)
gm
3

Now use source("gmean.R"). If you do 1s() now you will see that you have a new
object called gmean. This is your new function object. Try calling it:

> gmean(1:10)
[1] 4.528729

Let us look at the function file in detail:

gmean <- function(x){
This line is just an assignment - the object is called gmean, and it is going to be a
function. The (x) specifies the arguments to the function - here there is just one

argument, called x. The curly bracket then starts the code for the function.

geometric mean calculation

7 STATISTICAL ANALYSIS 30

This is a comment. Anything after a # in Splus is a comment.

prodx <- prod(x)
n <- length(x)
gm <- prodx~(1/n)

This is the code for the geometric mean (in three lines). The result is now in the
variable gm. Now we have to tell the function to return this value as its return value.

gm
}

The last thing evaluated by a function becomes its return value. We just put gm on a
line, and then that becomes the return value.

If you type the name of a function without (), Splus prints the code of the function.
Try that, type: gmean.

6.2.1 Exercise

1. Write a function that takes two vectors as arguments, vi and v2, and returns the
difference between the medians of the two vectors. Call the vector median.diff.

2. Write a function that returns the mean of the values in a vector that are greater
than the median. Use the median() function. Call your function gtmean.

7 Statistical Analysis

So far we have seen only seen some data manipulation and the calculation of sum-
mary statistics. R can do a multitude of statistical analysis including linear models
(1m), generalised linear models (glm), analysis of variance (aov and anova), non linear
models with mixed effects (nlme generalised additive models (gam), survival analysis
(survival), time series analysis (tseries), multivariate analysis (multiv) and many
more.

Some of these must be loaded as packages using the 1ibrary() function.

7.1 Simple Linear Regression

We are going to use a simple example to illustrate some basic analysis in R. First will
start by generating two vectors (variables) x and y.

> x <- 1:6
> y <= 2xx + rnorm(6)
> rbind(x, y)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000000 2.000000 3.000000 4.000000 5.000000 6.00000
[2,] 2.542805 3.981726 6.752499 8.822148 9.032984 10.77004

7 STATISTICAL ANALYSIS 31

We want to investigate the relationship between x and y. Let us start by plotting x
again y.

> plot(x, y)

o
10
o
o
8_
y o

6_
4 o

o

T T T T T T

1 2 3 4 5 6

Figure 1: Plot of x against y

The plot indicates that there appears to be a linear relationship between x and y (even
if there is not in you case please continue with this example).

We will now use the Im() function to fit a simple linear regression model.
> Im(y~x)

Call:
Im(formula = y ~ x)

Coefficients:
(Intercept) X
1.148 1.667

Here we performed a linear regression of y on x. The intercept is 1.148 and the slope
parameter is 1.667. Like any object in R we can save the results to another object,
say modelxy.

> modelxy <- 1lm(y~x)

7 STATISTICAL ANALYSIS 32

If we type modelxy then this same results as above. Several functions allow us to
display details about the statistical model. The summary() function displays more
details about the model and the model fit.

> summary (modelxy)

Call:
Im(formula = y = x)

Residuals:
1 2 3 4 5 6
-0.2724 -0.5008 0.6025 1.0047 -0.4518 -0.3822

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.1477 0.6661 1.723 0.15997
b'd 1.6674 0.1710 9.749 0.00062 x*x*x*
Signif. codes: O ‘“x*x*’ 0.001 ‘**’ 0.01 ‘x> 0.056 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.7155 on 4 degrees of freedom
Multiple R-Squared: 0.9596, Adjusted R-squared: 0.9495
F-statistic: 95.04 on 1 and 4 degrees of freedom, xp-value: 0.0006201

The residuals, coefficients and predicted values can be accessed using the residuals(),
coef () and predict () functions, respectively.

> residuals(modelxy)

1 2 3 4 5 6
-0.2723518 -0.5008482 0.6025065 1.0047380 -0.4518438 -0.3822007
>
> coef (modelxy)

(Intercept) X
1.147739 1.667418
>
> predict(modelxy)
1 2 3 4 5 6
2.815157 4.482574 6.149992 7.817410 9.484827 11.152245

You can plot the regression line using the function abline().

> plot(x,y)
> abline(modelxy)

The list of elements of the results of an analysis can found using the names () function.

> names (modelxy)

7 STATISTICAL ANALYSIS 33

o
10
o
o
8_.
y o
6_
4 o
o
T T T T T T
1 2 3 4 5 6

Figure 2: Plot of x against y with the fitted line from a a simple linear regression.

[1] "coefficients" '"residuals" "effects" "rank"
[6] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

> names (summary (modelxy))

[1] "call" "terms" "residuals" "coefficients"
[6] "sigma" "df" "r.squared" "adj.r.squared"
[9] "fstatistic" "cov.unscaled"

To extract the elements the follow notation can be used:

> modelxy$effects
(Intercept) X
-17.1065037 6.9753085 0.6623385 0.9794860 -0.5621799 -0.5776208

> modelxy$df.residual
(1] 4

> modelxy["df.residual"]
$df .residual
[1] 4

> summary(modelxy) ["r.squared"]
$r.squared

> summary(modelxy)$r.squared

8 GRAPHICS 34

[1] 0.959612
[1] 0.959612

8 Graphics

R graphics capabilities are very powerful and flexible. Given the range of possibilities,
only the very basics are presented here.

8.1 Demonstration

R offer a demonstration of it’s graphical capabilities. Type the following to see the
demo:

> demo(graphics)

8.2 Simple Example

The following will plot the sine curve (see Figure 3).

> xrads <- seq(0, 2*pi, length=32)
> sinx <- sin(xrads)
> plot(xrads, sinx)

This shows us the default behaviour of the plot function - take two arguments, and
plot a scatter plot of one against the other. Splus works out the axes for you, and
labels them nicely too.

By using some optional arguments, we can make it join the dots up - try:
> plot(x,y,type=’1’)

This makes plot draw a line graph.

Once you have drawn a plot with plot you can add extra things to it. The functions
lines and points add lines and points to a plot. Try the following (plots not shown):

> plot(xrads, sinx, type=’1’) # lines first

> points(xrads, sinx) # overlay points

> plot(xrads, sinx) # new plot, points
> lines(xrads, sinx) # add lines

Now we can use the following to label the graph.

8 GRAPHICS 35

1.0 ° 00 o o
o
o
o
o
o
0.5 T o
o
o
o
o
sinx 0.0 1 © o
o
o
o
o
-0.5 1 ©
o
o
o
o
o o
1.0 ©00°
T I I T T | T
0 1 2 3 4 5 6
xrads

Figure 3: The sine curve - points only.

> plot(xrads, sinx,

+ main="Sine Curve",

+ xlab="Radians",

+ ylab="Sin(Radians)",
+ type="b")

The main option is to title graph, xlab and ylab label the x and y axes, type=’’b’’
plots both lines and points.

To plot a horizontal line at zero and a vertical line at Z, = and %’T, type:

> abline(h=0, v=c(pi/2, pi, 3*pi/2))

8.3 Exercises

1. Plot a graph that shows three curves - y=x, y=x**2, and y=sqrt(x), for x from
0 to 3. Plot a vertical line at 1, 2 and 3.

2. Plot a graph that shows y=1/x for x from 1 to 10 using a line and the points.
Plot a horizontal line at 0.75.

3. Plot the sine and cosine curves on the same plot. For the sine curve use a line
and for the cosine curve use points.

