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Modelling Time Series Data
Classical Decomposition revisited

Classical Decomposition

Recall that we defined the (additive) Classical Decomposition (Model) as:

Xt = mt + st + Yt, t = 1, . . . , n (1)

where

1) mt was the trend component

2) st = st+d (with d = period) was the seasonal component and

3) Yt was the cyclical component also sometimes referred to as the ”noise
component” (with E(Yt) normalised to 0)

Focus will be on stationary models: we will assume that the data has been
detrended and de-seasonalised.

Will thus focus on modelling Yt in (1) above.
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Transforming Data

Notice from (1) that the relation is additive! This does not need to be the case, so
model could also be multiplicative as

X̃t = Mt × St × Ỹt, t = 1, . . . , n (2)

but will become additive after log-transforming the data.

It is common to work with log-transformed (natural logarithm to base e) data in
economics and finance, because:

1) it has a variance stabilising property

2) log changes are percentage changes for small changes (only approximate for
large changes if discrete changes are assumed)
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Transformations of Data

3) exponential relationships become linear in a time trend, multiplicative ones
become additive

Example

Consider the following general and simple differential equation (also known as the
exponential growth model) for the evolution of output over time

dY
dt

= Yδ (3)

where δ is some rate of growth if δ > 0 (and a rate of decay if δ < 0) and Y is the
level of output at the time. From standard results, we can solve (3) by noting that

dY
Y = δdt
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∫
dY
Y =

∫
δdt

ln |Y|+ c1 = δt+ c2

Y = eδt+C

Y = Aeδt (4)

where C = c2 − c1 and A = eC . The relation in (4) is the general solution of the
simple differential equation in (3). Taking logs of (4) we get

ln (Y) = ln(A) + δt (5)

which is linear in the time index t.

So log transform dampens exponential growth patterns and makes the whole relation
linear.
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Box-Cox transform

Another more general way to transform data is a power transform known as the
Box-Cox transformtion, defined as:

yt =

{
(xλt − 1)/λ if λ 6= 0

log(xt) if λ = 0
(6)

where λ is a parameter that determines the shape of the transform.

Box-Cox transformtion is frequently employed to stabilise ”ill behaved” data.

When dealing with time series data a number of things can influence the data
adversely, ie.,

� outliers,
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� jumps,

� breaks,

� funky seasonal patterns, etc.,

can make it difficult to work with the data.

λ parameter controls how the series is stabilised, so how to choose λ is therefore
crucial.

In general, one sets up an optimisation routine for a given loss function and then
does a grid search over it.

Implementation details are given in Johnson and Wichern (2007), page 193.
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Modelling Time Series Data
Transformations of Data: Example

Transformations of Data: Example
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Figure 1: Retail Sales UK 1982:04 – 2005:04.
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Stationarity and Ergodicity
Convergence of sample moments to population moments

Stationarity and convergence of sample moments to population moments

Recall that we defined a stochastic process {Xt, t ∈ Z} to be weakly (or second
order) stationary if

1) µX(t) = E[Xt] = µ is independent of t;

2) γX(t+ h, t) = Cov(Xt+h, Xt) = E[(Xt+h − µX(t+ h))(Xt − µX(t))] = γ(h)
is independent of t for each integer h.

Also, recall that we defined the first two sample moments corresponding to the
population moments µX(t) and γX(t+ h, t) as
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1) Sample mean:

x̄ =
1

n

n∑
t=1

xt (7)

2) Sample autocovariance function at lag h:

γ̂(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n. (8)

How do we know that the sample quantitative converge to their population
quantities?
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That is,

plim
n→∞

x̄ = E(Xt)

= µX(t)

plim
n→∞

γ̂(h) = Cov(Xt+h, Xt)

= γX(t+ h, t)

With ”normal” cross sectional data, we had laws of large numbers (LLNs) that would
guarantee the converge of sample moments to population moments, as n→∞.

� for independently and identically distributed data.

� time series data is, by assumption, not independent over time,

⇒ standard LLNs do not hold.
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Ensemble average

Assume that there exists some underlying DGP that creates data.

Use a computer to simulate one (1) artificial data from such a stochastic process:

{x(1)t }t∈Z = {. . . , x(1)−2, x
(1)
−1, x

(1)
0 , x

(1)
1 , x

(1)
2 , . . . , x(1)n , x

(1)
n+1, . . .}. (9)

{x(1)t }t∈Z in (9) is just one artificial sequence that can be generate from our DGP.

Suppose we generate many (K) of these sequences. Then, E(xt) is probability limit
of ”cross sectional” series:

µt = E(Xt) = plim
K→∞

1

K

K∑
i=1

x
(i)
t . (10)

(10) is known as the ensemble average of the stochastic process Xt at time period t.
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Note: other moments of interest (Variance and Autocovariance) are conceptually
analogously, ie., ensemble averages are probability limits

γt(j) = E[(Xt − µt)(Xt−j − µt−j)]

= plim
K→∞

1

K

K∑
i=1

(x
(i)
t − µt)(x

(i)
t−j − µt−j). (11)

We never have more than one observed series available with empirical data.

Problem

We are computing the expected value of the random variable at time t from a sample
of n time series observations and not from cross section or ensemble average.

See Table (1) below for illustration.
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Ensemble Averages

Table 1: Example of time series and ensemble averages

t \ i 1 2 3 4 · · · K

...
...

...
...

...
...

...

−1 x
(1)
−1 x

(2)
−1 x

(3)
−1 x

(4)
−1 · · · x

(K)
−1

0 x
(1)
0 x

(2)
0 x

(3)
0 x

(4)
0 · · · x

(K)
0

1 x
(1)
1 x

(2)
1 x

(3)
1 x

(4)
1 · · · x

(K)
1

2 x
(1)
2 x

(2)
2 x

(3)
2 x

(4)
2 · · · x

(K)
2

3 x
(1)
3 x

(2)
3 x

(3)
3 x

(4)
3 · · · x

(K)
3

4 x
(1)
4 x

(2)
4 x

(3)
4 x

(4)
4 · · · x

(K)
4

5 x
(1)
5 x

(2)
5 x

(3)
5 x

(4)
5 · · · x

(K)
5

...
...

...
...

... · · ·
...

n x
(1)
n x

(2)
n x

(3)
n x

(4)
n · · · x

(K)
n

n+ 1 x
(1)
n+1 x

(2)
n+1 x

(3)
n+1 x

(4)
n+1 · · · x

(K)
n+1

n+ 2 x
(1)
n+2 x

(2)
n+2 x

(3)
n+2 x

(4)
n+2 · · · x

(K)
n+2

...
...

...
...

... · · ·
...
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Information content is mismatched!

� we are interested in an ensemble average

� but we only have one time series of data available to compute the average at
each point in time.

For the time series average x̄ to converge to the ensemble concept of E(Xt) = µt
we need to put some restrictions on the memory of the stochastic process.

For a time series average to converge to the ensemble concept of E(Xt), the
stochastic process needs to be ergodic.
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Stationarity and Ergodicity
Ergodicity and LLNs

For the formal definition of ergodicity, we need the stochastic process to be weakly
stationary, which we have already defined.

Definition (Ergodicity)

Let f (·) and g (·) be two bounded and real valued functions. A stationary process
{Xt}t∈Z is said to be ergodic if, for any k, ` ∈ Z and j ∈ N+

lim
j→∞

|E [f(Xt, . . . , Xt+k)× g(Xt+k+j , . . . Xt+k+j+`]|

= |E [f(Xt, . . . , Xt+k)]× E[g(Xt+k+j , . . . Xt+j+k+`]| .
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Ergodicity and LLNs

The definition of ergodicity above states the following:

� if we take two stochastic process at two different time periods positioned ”far
apart” from one another, then these two processes are almost independently
distributed from one another.

Notice here the difference between stationarity and ergodicity.

� Ergodicity focuses on the asymptotic independence of the process.

� Stationarity, is concerned with the time invariance of the moments of the
process.

To be ergodic, the memory of a stochastic process should fade the further the two
blocks are taken away from each other

� the dependence between increasingly distant observations disappears
“sufficiently rapidly”.
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Stationarity and Ergodicity
Ergodicity and LLNs

Theorem (LLN for covariance stationary processes)

Let {Xt}t∈Z be a covariance stationary process with finite mean (µ <∞) given by:

E(Xt) = µ

E(Xt − µ)(Xt−j − µ) = γ(j) (12)

∀ t ∈ Z. If
∞∑
j=0

|γ(j)| <∞ (13)

then,

x̄ = n−1
n∑
t=1

xt
p−→E(Xt) = µ

and xt is said to be ergodic for the mean.
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Ergodicity and LLNs

The above LLN is important as it provides us with the conditions under which we can
validly use time series averages to obtain information about the ensemble concept of
the population moment

Transformations of stationary processes are stationary and ergodic

Theorem (Transformations of stationary processes)

If {Xt}t∈Z is a covariance stationary and ergodic process and g (·) a (real-valued
measurable) function then {Yt}t∈Z formed from

Yt = g(. . . , Xt−2, Xt−1, Xt, Xt+1, Xt+2, . . .) (14)

is also an ergodic and covariance stationary process.
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Theorem (Ergodic theorem for stationary processes)

If {Xt}t∈Z is a covariance stationary and ergodic process, g (·) a (real-valued
measurable) function and E [g(Xt)] <∞ (moment exists), then:

ḡn = n−1
n∑
t=1

g (xt)
p−→E [g(Xt)] .

The Transformations of stationary processes result establishes that we can
transform any covariance stationary and ergodic series by a (well-behaved) function
and get again an ergodic and stationary series back in return.

The Ergodic theorem for stationary processes result says that the sample mean of
any (well-behaved) functional transformation g(·) of a covariance stationary and
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Ergodicity and LLNs

ergodic series converges to the corresponding population expectation, as long as the
population expectation exists.

Summary of results on Stationarity and Ergodicity

Results above tell us that we can validly estimate any population moments from the
time series average (and not the cross-section or ensemble average)

1) as long as the process {Xt}t∈Z is covariance stationary and ergodic and

2) the population moments exist.
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ARMA Models
Background

Background

AutoregRessive (AR) and MovingAverage (MA) models, when put together, ARMA
models

� the fundamental building block of time series analysis and

� have a long history in this literature.

Origins are from Yule (1927)

� first to consider the idea that a time series for which successive values are
highly correlated can be generated from a series of uncorrelated and exogenous
White Noise ”shocks” Zt

� White Noise process is transformed into an observed process Xt by a
transformation which is called a linear filter
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� the linear filter simply takes a weighted sum of the infinite history of White
Noise ”shocks” Zt. The series is transformed as follows

Xt = µ+ Zt + ψ1Zt−1 + ψ2Zt−2 + ψ3Zt−3 + · · ·

= µ+ (1 + ψ1L+ ψ2L
2 + ψ3L

3 + · · · )Zt
= µ+ ψ(L)Zt (15)

where µ is the unconditional mean or level of the series and ψ(L) is the lag
polynomial

� linear filter ψ(L) is called a transfer function
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ARMA Models
Background

� whether the generated series is stationary or not depends on the stability of
the transfer function.

– the filter is said to be stable if the ψj weights are absolutely summable, that is, if

∞∑
j=0

|ψj | <∞ (16)

holds, with ψ0 = 1. Under this condition, the xt process will also be stationary.

First formalisation of Yule’s idea of a linear filter was given by Wold (1938) and is
known Wold’s Representation Theorem

� also as the Wold Decomposition

� or just Wold’s Theorem
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Wold Decomposition Theorem

Theorem (Wold Decomposition)

If {Xt} is a stationary time series, then it can be represented as:

Xt =
∞∑
j=0

ψjZt−j + Vt, (17)

where

� ψ0 = 1 and
∑∞
j=0 ψ

2
j <∞;

� {Zt} ∼WN(0, σ2);

� Cov(Zs, Vt) = 0 for all t;

� {Vt} is deterministic (perfectly forecastable)
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ARMA Models
Wold Decomposition

Note from above that we only required square summability, ie.,

∞∑
j=0

ψ2
j <∞ (18)

for Wold’s theorem to hold, which is a weaker condition than the one of absolute
summability assumed in Yule’s formulation of a linear filter, that is,

∞∑
j=0

|ψj | <∞. (19)
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Box-Jenkins Approach

The Wold representation is not feasible for modelling a realised process xt

� only have finite number of observations

� the key problem in ARMA modelling is how best to approximate the infinite
order term ψ(L) in

Xt = µ+ ψ(L)Zt, {Zt} ∼WN(0, σ2), ψ0 = 1, and
∑

ψ2
i <∞. (20)

The key idea is to approximate the infinite order polynomial ψ(L) with a ratio of two
finite polynomial

ψ(L) =
θq(L)

φp(L)
, (21)

with p, q finite.
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ARMA Models
Box-Jenkins Approach

Using (21) we get

Xt = µ+
θ(L)

φ(L)
Zt

or equivalently

φ(L)Xt = φ(L)µ+ θ(L)Zt

= φ(1)µ+ θ(L)Zt

(L)Xt = c+ φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p (22)

+ Zt + θ1Zt−1 + θ2Zt−2 + . . .+ θqZt−q.

where c = φ(1)µ.
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In Box-Jenkins approach, need to fined appropriate AR(p) and MA(q) components
to model the dynamic behaviour of Xt in a parsimonious way.

3 basic steps in the Box-Jenkins modelling approach (need to assure that Xt is
stationary and free from seasonal variation)

1) Model Selection (also called Identification)

2) Model Estimation (estimation of parameters)

3) Model Checking and Evaluation (forecasting)

� Model selection part focuses on finding the right orders p and q of the AR
and MA components

– to find orders, split the ARMA(p, q) model in its two component blocks

– look at the properties of these two blocks individually, before we put the model
back together into its ARMA form.
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– look at sample autocorrelation functions (ACF) and partial autocorrelation
functions (PACF).

– later on when modelling, will use information criteria to help find the most
parsimonious model.

� Model estimation and forecasting with ARMA models will be outlined in the
next Lecture Chapter.
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ARMA Processes

Definition (ARMA Processes)

{Xt} is an ARMA(p,q) process if {Xt} is stationary and if for every t,

Xt − φ1Xt−1 − . . .− φpXt−p = c+ Zt + θ1Zt−1 + . . . θqZt−q, (23)

where {Zt} ∼WN(0, σ2) and the polynomials

φ(z) = 1− φ1z − . . .− φpzp (24)

and
θ(z) = 1 + θ1z + . . .+ θqz

q (25)

have no common roots (factors).
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Some Results

The process {Xt} is said to be an ARMA(p,q) process with mean µ if {Xt − µ} is an
ARMA(p,q) process.

The time series {Xt} is said to be an autoregressive process of order p (or AR(p)) if
θ(z) ≡ 1, and a moving-average process of order q (or MA(q)) if φ(z) ≡ 1.

Existence and Uniqueness

A stationary solution {Xt} of the equations for an ARMA(p,q) model exists (and is
also the unique stationary solution) if and only if

φ(z) = 1− φ1z − . . .− φpzp 6= 0 for all |z| = 1. (26)
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Invertibility of Lag Polynomial

The lag polynomial θ(L) is invertible if

θ(z) = 1− θ1z − . . . θpzp 6= 0 for all |z| ≤ 1. (27)

Rationale for ARMA models

Why is the seemingly atheoretical looking ARMA model so popular among
practitioners and also as a tool for economic policy modelling?

� ARMA models are notoriously difficult to beat out-of-sample.

– low number of parameters in ARMA models compared to bigger scale and more
complicated models.

– less parameters results in less forecast uncertainty due to estimation uncertainty.

� ARMA models as special versions of reduced form economic models

– coming from a structural econom(etr)ic model.
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To see this, consider the simplest macroeconomic model.

Take Consumption Ct, Output Yt and Investment It in the following bivariate system

Ct = a0 + a1Yt + a2Ct−1 + εt (28)

Yt ≡ Ct + It (29)

where εt is some uncorrelated shock, with mean 0 and variance 1.

Ct and Yt are endogenous, It and εt are exogenous. Substituting Yt into Ct and
re-arranging yields the reduced form models:

Ct − δ2Ct−1 = δ0 + δ1It + δεt (30)

Yt − δ2Yt−1 = δ0 − δ2It−1 + σ(εt + It) (31)
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where

δ2 =
a2

1− a1
, δ0 =

a0
1− a1

(32)

and

δ1 =
a1

1− a1
, δ =

1

1− a1
. (33)

If It White Noise and uncorrelated with εt with mean 0 and variance 1,

� then Ct is an AR(1) process.

� Yt can be shown to have the properties of an ARMA(1,1) process
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ACF and PACF

Definition (ACF)

The Autocorrelation function is defined as

ρ (j) =
Cov (Xt, Xt−j)

Var (Xt)
=
γ (j)

γ (0)
(34)

Definition (PACF)

The Partial Autocorrelation function is defined as

φjj = Corr (Xt, Xt−j |Xt−1, Xt−2, ..., Xt−j+1) (35)

The PACF can be viewed as the last coefficient in a population linear regression of
Xt on a constant and j lagged values of Xt.
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Remark: The PACF measures the correlation between Xt and Xt−j by controlling
for or conditioning on all lagged values of Xt up to t− j + 1. So it gives the net
effect (or influence) of Xt−j on Xt.

We can always work out the PACF after we have computed the ACFs

� PACFs are a function of the ACFs.

� there exist a few different ways on how to quickly work out the ACFs of a
given AR, MA or mixed ARMA model.

For AR models, easiest to work out ACFs by writing model in de-meaned form
X̃t = (Xt − µ)

� multiply AR process by X̃t−j on both sides and

� then take expectations.
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For MA models, can follow a similar strategy.

� will need to evaluate E(XtZt−j) though

� can use a recursive form for this (this will become clear later)

We will learn later how to move between AR, MA and ARMA models in general
using the lag polynomial operator
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Proposition (Mean)

Let Xt be a covariance stationary AR(p) process defined as

φ (L)Xt = c+ Zt (36)

where Zt ∼WN
(
0, σ2

)
.

Then its (unconditional) mean µ has the form

E(Xt) =
(

1−
p∑
i=1

φi
)−1

c. (37)
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Proof.

Invert the AR(p) to its MA(∞) representation. This yields:

Xt = φ (L)−1 c+ φ (L)−1 Zt

= φ (1)−1 c+ ψ (L)Zt

=
(
1−

∑p
i=1 φi

)−1
c+

∞∑
j=0

ψjZt−j (38)

Taking expectations of (38) yields

E (Xt) =
(
1−

∑p
i=1 φi

)−1
c+

∞∑
j=0

ψj E (Zt−j)︸ ︷︷ ︸
=0

=
(
1−

∑p
i=1 φi

)−1
c

due to
∑∞
j=0 ψjE (Zt−j) = 0, ∀j = 1, 2, . . .
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Proposition (Autocovariance)

The AR(p) process defined in (36) has the following autocovariance recursions

γ(j) =

{
φ1γ (1) + φ2γ (2) + ...+ φpγ (p) + σ2 for j = 0 (39a)

φ1γ (j − 1) + φ2γ (j − 2) + ...+ φpγ (j − p) for j > 0 (39b)
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Properties of AR(p) models

Proof.

Write (36) in demeaned
(
X̃t = Xt − µ

)
form and expand the φ(L) term to get

φ (L) X̃t = Zt

X̃t = φ1X̃t−1 + φ2X̃t−2 + ...+ φpX̃t−p + Zt. (40)

Then multiply both sides of (40) by X̃t−j and take expectations, which gives

E
[
X̃tX̃t−j

]
= φ1E

[
X̃t−1X̃t−j

]
+ φ2E

[
X̃t−2X̃t−j

]
+ ...

+ φpE
[
X̃t−pX̃t−j

]
+ E

[
ZtX̃t−j

]

γ (j) = φ1γ (j − 1) + φ2γ (j − 2) + ...

+ φpγ (j − p) + E
[
ZtX̃t−j

]
where E

[
ZtX̃t−j

]
=

{
σ2 for j = 0
0 for j > 0

.
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The first (p+ 1) equations in the recursive system in (39) can be put into the
following matrix form

γ = Aγ + Σ (41)

(I−A) γ = Σ

γ = (I−A)−1Σ (42)

where I is a (p+ 1) identity matrix and

γ = [γ (0) γ (1) γ (2) · · · γ (p)]′

Σ = [σ2 0 0 · · · 0]′.

The A matrix for the different AR(p) models can be seen to follow the sequence
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Properties of AR(p) models

AAR(1) =

[
0 φ1

φ1 0

]
, AAR(2) =

 0 φ1 φ2

φ1 φ2 0
φ2 φ1 0

 ,

AAR(3) =


0 φ1 φ2 φ3

φ1 φ2 φ3 0
φ2 (φ1 + φ3) 0 0
φ3 φ2 φ1 0

 ,

AAR(4) =


0 φ1 φ2 φ3 φ4

φ1 φ2 φ3 φ4 0
φ2 (φ1 + φ3) φ4 0 0
φ3 (φ2 + φ4) φ1 0 0
φ4 φ3 φ2 φ1 0

 , etc

45 / 127

ARMA Algebra
Properties of AR(p) models

Once the (p+ 1) entries in γ vector are found, find the autocovariance γ (j) of any
order j > p from the difference equation of autocovariance given in (39b), ie. , from

γ (j) = φ1γ (j − 1) + φ2γ (j − 2) + · · ·+ φpγ (j − p) . (43)

Deflating (43) by γ (0) = Var
(
X̃t
)

gives us the autocorrelation function (ACF),

which is also a difference equation of order p, taking the form

ρ (j) = φ1ρ (j − 1) + φ2ρ (j − 2) + · · ·+ φpρ (j − p) . (44)

Notice here also that we can re-write the relation for the case when j = 0 in (39a) by
noting that
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γ (0) = φ1γ (1) + · · ·+ φpγ (p) + σ2

γ (0)− φ1γ (1)− · · · − φpγ (p) = σ2

γ (0) [1− φ1ρ (1)− · · · − φpρ (p)] = σ2

γ (0) =
σ2

[1− φ1ρ (1)− · · · − φpρ (p)]
(45)

Var(Xt) = γ (0) =
σ2[

1−
∑p
i=1 φiρ(i)

] (46)

with ρ(j) = γ(j)
γ(0)

.
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Example AR(1)

Let X̃t = (Xt − µ) be generated by

φ (L) X̃t = Zt (47)

where φ (L) = 1− φ1L and Zt ∼WN
(
0, σ2

)
.

γ (j) =

{
φ1γ (1) + σ2 for j = 0

φ1γ (j − 1) for j > 0
(48)

so that we have γ = [γ (0) γ (1)]′, Σ =
[
σ2 0

]′
and A =

[
0 φ1

φ1 0

]
and the system

looks like [
γ (0)
γ (1)

]
=

[
0 φ1

φ1 0

] [
γ (0)
γ (1)

]
+

[
σ2

0

]
(49)

γ = Aγ + Σ. (50)
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We then get

γ = (I−A)−1 Σ (51)[
γ (0)

γ (1)

]
=


σ2

(1−φ2
1)

φ1σ
2

(1−φ2
1)

 (52)

and corresponding ACFs  γ(0)γ(0)

γ(1)
γ(0)

 =

[
ρ (0)

ρ (1)

]
=

[
1
φ1

]
. (53)
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All ACFs for j > 1 are generated from the recursion ρ (j) = φ1ρ (j − 1), so for

j = 2 : ρ (2) = φ1ρ (1) = φ2
1

j = 3 : ρ (3) = φ1ρ (2) = φ3
1

j = m : ρ (m) = φ1ρ (m− 1) = φm1 .
...

(54)
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Example AR(2)

Consider the AR(2)
(
1− φ1L− φ2L

2
)
X̃t = Zt, giving

γ (0) = φ1γ (1) + φ2γ (2) + σ2

γ (1) = φ1γ (0) + φ2γ (1)

γ (2) = φ1γ (1) + φ2γ (0)

Here we have the relationγ (0)
γ (1)
γ (2)

 =

 0 φ1 φ2

φ1 φ2 0
φ2 φ1 0

γ (0)
γ (1)
γ (2)

+

σ2

0
0

 (55)
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which then gives the solution

γ = D−1σ2

 (1− φ2)
φ1

φ2
1 + φ2(1− φ2)

 (56)

where D = (1 + φ2)
[
(1− φ2)2 − φ2

1

]
is the determinant of (I−A).

The ACF vector is given by ρ (0)
ρ (1)
ρ (2)

 =

 1
φ1

(1−φ2)
φ2
1

(1−φ2)
+ φ2

 (57)
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and any higher order can again be compute from the ACF recursion

ρ (j) = φ1ρ (j − 1) + φ2ρ (j − 2) , ∀j > 2. (58)

Hence for

j = 3 : ρ (3) = φ1ρ (2) + φ2ρ (1) =
φ1φ2(2−φ2)+φ

3
1

(1−φ2)

j = 4 : ρ (4) = φ1ρ (3) + φ2ρ (2) =
φ2
1φ2(2−φ2)+φ

4
1

(1−φ2)
+

φ2φ
2
1

(1−φ2)
+ φ2

2

...

(59)
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Yule Walker equations and PACFs

There exists a relationship between the φi parameters (∀i = 1, . . . , p) in the AR(p)
model and the ACFs.

Take j = 1, . . . , p in (44) and form the following system of equations for the ACFs

ρ (1) = φ1 + φ2ρ (1) + · · ·+ φpρ (p− 1)

ρ (2) = φ1ρ (1) + φ2 + · · ·+ φpρ (p− 2)

...

ρ (p) = φ1ρ (p− 1) + φ2ρ (p− 2) + · · ·+ φp

which in matrix form can be re-expressed as
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
ρ (1)
ρ (2)
ρ (3)

...
ρ (p)

 =


1 ρ (1) ρ (2) · · · ρ (p− 1)

ρ (1) 1 ρ (1) · · · ρ (p− 2)
ρ (2) ρ (1) 1 · · · ρ (p− 3)

...
...

...
. . .

...
ρ (p− 1) ρ (p− 2) ρ (p− 3) · · · 1




φ1

φ2

φ3

...
φp

 (60)

ρ = Rφ. (61)

These equations above in (60) are known as Yule Walker equations.
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Because PACF defined as φjj = Corr (Xt, Xt−j |Xt−1, Xt−2, . . . , Xt−j+1) controls
for impact of {Xt−i}j−1

i=1 when gauging correlation between Xt−j and Xt, think of
the PACF within population regression context:

Xt = φj1Xt−1 + φj2Xt−2 + · · ·+ φjjXt−j + Zt (62)

where the regression coefficient on the jth term, ie., φjj , gives the jth PACF.

Another way to get PACFs is to use Yule Walker equations in (60) to formulate
system of linear equations:

ρ (1)
ρ (2)
ρ (3)

...
ρ (j − 1)

 =


1 ρ (1) ρ (2) · · · ρ (j − 1)

ρ (1) 1 ρ (1) · · · ρ (j − 2)
ρ (2) ρ (1) 1 · · · ρ (j − 3)

...
...

...
. . .

...
ρ (j − 1) ρ (j − 2) ρ (j − 3) · · · 1




φj1
φj2
φj3

...
φjj

 (63)
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ρj = Rjφj (64)

and then extract PACFs recursively by solving for φjj term as needed.

For example, set φ11 = ρ (1) for the first PACF and then obtain the remaining
PACFs, for j = 2, 3, 4, . . . , from

φ22 =

∣∣∣∣ 1 ρ (1)
ρ (1) ρ (2)

∣∣∣∣∣∣∣∣ 1 ρ (1)
ρ (1) 1

∣∣∣∣ , φ33 =

∣∣∣∣∣∣
1 ρ (1) ρ (1)

ρ (1) 1 ρ (2)
ρ (2) ρ (1) ρ (3)

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ (1) ρ (2)

ρ (1) 1 ρ (1)
ρ (2) ρ (1) 1

∣∣∣∣∣∣
,
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φ44 =

∣∣∣∣∣∣∣∣
1 ρ (1) ρ (2) ρ (1)

ρ (1) 1 ρ (2) ρ (2)
ρ (2) ρ (1) 1 ρ (3)
ρ (3) ρ (2) ρ (1) ρ (4)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ (1) ρ (2) ρ (3)

ρ (1) 1 ρ (2) ρ (2)
ρ (2) ρ (1) 1 ρ (1)
ρ (3) ρ (2) ρ (1) 1

∣∣∣∣∣∣∣∣
, · · ·

where |·| denotes the determinant. Notice here that we are using Cramer’s Rule to
solve for the last entry of φjj of interest to us.
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Remark: Cramer’s Rule

To solve for the ith element of a system of equations Ax = b with Cramer’s Rule,
one needs to find

xi =
|Ai|
|A|

where Ai is the augmented matrix and is formed by replacing the ith column of
matrix A with vector b and |·| denotes the determinant.

The representation above in (63) is a good and intuitive way to understand how the
PACFs are related to the ACFs

� but is inefficient way to compute them

� a fast and efficient way to compute the PACFs is to use the so called
Durbin-Levinson Algorithm.
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Definition (Durbin-Levinson Algorithm)

The PACFs can be obtained recursively from the following relations. Initialise
φ11 = ρ (1) and let φjk = φj−1,k − φjjφj−1,j−k for all k = 1, 2, . . . , j − 1 and j > 1.
Then, φjj is computed as

φjj =
ρ(j)−

∑j−1
k=1 φj−1,kρ(j − k)

1−
∑j−1
k=1 φj−1,kρ(k)

, ∀j > 1.
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Example: General PACF calculation

PACF recursively extracted from the two approaches

First, note that φ11 = ρ(1). Then,

φ22 =

∣∣∣∣ 1 ρ (1)
ρ (1) ρ (2)

∣∣∣∣∣∣∣∣ 1 ρ (1)
ρ (1) 1

∣∣∣∣ =
ρ (2)− ρ (1)2

1− ρ (1)2

φ33 =

∣∣∣∣∣∣
1 ρ (1) ρ (1)

ρ (1) 1 ρ (2)
ρ (2) ρ (1) ρ (3)

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ (1) ρ (2)

ρ (1) 1 ρ (1)
ρ (2) ρ (1) 1

∣∣∣∣∣∣
=
ρ (3) [1− ρ (1)2] + ρ (1)3 + ρ (2) [ρ (1) {ρ (2)− 2}]

[ρ (2)− 1][2ρ (1)2 − ρ (2)− 1]
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Using the Durbin-Levinson Algorithm, we get for j = 2

φ22 =
ρ(2)−

∑1
k=1 φ1kρ(2− k)

1−
∑1
k=1 φ1kρ(k)

=
ρ(2)− φ11ρ(1)

1− φ11ρ(1)

=
ρ (2)− ρ (1)2

1− ρ (1)2
.

For j = 3, we get (with φ2k = φ1k − φ22φ1,2−k)

φ33 =
ρ(3)−

∑2
k=1 φ2kρ(3− k)

1−
∑2
k=1 φ2kρ(k)
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=
ρ(3)− [(φ11 − φ22φ11)ρ(2) + φ22ρ(1)]

1− [(φ11 − φ22φ11)ρ(1) + φ22ρ(2)]

=
ρ(3)− [ρ(1)(1− φ22)ρ(2) + φ22ρ(1)]

1− [ρ(1)2(1− φ22) + φ22ρ(2)]

=
ρ (3) [1− ρ (1)2] + ρ (1)3 + ρ (2) [ρ (1) {ρ (2)− 2}]

[ρ (2)− 1][2ρ (1)2 − ρ (2)− 1]
etc.

Remark: PACFs

”Estimates of the PACFs φjj obtained using the Yule Walker equations become very
sensitive to rounding errors and should not be used if the values of the parameter are
close to the non-stationary boundaries.” Box et al. (1994), page 68.
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Example: PACF of AR(1)

Recall that AR(1) has ρ (j) = φ1ρ (j − 1) for all j = 0, 1, 2, . . .. Thus, we have

φ11 = ρ (1) = φ1

φ22 =
ρ (2)− ρ (1)2

1− ρ (1)2
.

But

ρ (2) = φ1ρ (1)

= ρ (1)2

because of ρ (1) = φ1. Hence φ22 = 0.
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Also, for φ33 we have in the numerator

ρ (3) [1− ρ (1)2] + ρ (1)3 + ρ (2) [ρ (1) {ρ (2)− 2}] .

With ρ (j) = ρ (1)j we get

ρ (3) [1− ρ (1)2] + ρ (1)3 + ρ (2) [ρ (1) {ρ (2)− 2}]

= ρ (1)3 [1− ρ (1)2] + ρ (1)3 + ρ (1)2 [ρ (1) {ρ (1)2 − 2}]

= 2ρ (1)3 − ρ (1)5 + ρ (1)5 − 2ρ (1)3

= 0

so the PACF for j > 1 = 0 for an AR(1) process.
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Summary of ACF and PACF structure of AR(p) Models

Process ACF PACF

White Noise Zt 0 for all j 0 for all j

AR(1) ρ(j) = φj1 for all j > 0 φjj = ρ(j) = φ1 for j = 1 and 0 for j > 1

AR(p) exp. decline to 0 non-zero for first p lags and 0 for j > p

Table 2: ACF and PACF properties of an AR(p) process.
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Stationarity/Stability of AR(p) models

Stationarity of the AR(p) model is determined by the lag polynomial φ(L).

� common to use terms stationarity and stability of a time series process
interchangeably

Definition (Stability of Lag Polynomial)

An AR(p) process φ(L)Xt = Zt is said to be stable (stationary) if all the roots of
φ(z) = 0 lie outside the unit circle. Equivalently, we have the condition

φ(z) = 1− φ1z − φ2z
2 − . . .− φpzp 6= 0, ∀ |z| ≤ 1, (65)

ie., the lag polynomial is not equal to zero for all |z| ≤ 1, where | · | denotes the
modulus.
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Remark: |x| is the modulus of x which is the absolute value for real x and
√
a2 + b2

for complex x, ie., when x = a+ bi, where i =
√
−1.

Remark: The lag polynomial is expressed in terms of the variable z and not the lag
operator L. This is a technical necessity because L is an operator and not a variable,
so cannot be used like a variable to find the solutions of the polynomial.

An alternative definition is to state the properties of the roots of φ(z) = 0 in terms
of the Factored Polynomial, where we express φ(z) as

1− φ1z − φ2z
2 − . . .− φpzp = (1− λ1z) (1− λ2z) . . . (1− λpz) . (66)
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Definition (Stability of Factored Polynomial)

An AR(p) process φ (L)Xt = Zt is said to be stable (stationary) if all the roots of
(1− λ1z) (1− λ2z) . . . (1− λpz) = 0 lie inside the unit circle. Equivalently, we have
the condition

(1− λ1z) (1− λ2z) . . . (1− λpz) 6= 0, ∀ |λ| ≥ 1, (67)

ie., the factored polynomial is not equal to zero for all |λ| ≥ 1, where | · | denotes
the modulus.

Fact: The roots of the lag polynomial are equal to the inverse of the roots of the
factored polynomial
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Example AR(2) roots:

Let Xt be an AR(2) process, taking the form

φ (L)Xt = Zt

where

φ (L) = 1− φ1L− φ2L
2.

Then

φ (z) = 1− φ1z − φ2z
2

and to check for the stability of the AR(2) we need to find

φ (z) = 0.

For the AR(2) process to be stable we need |zi| > 1, ∀i = 1, 2.
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The roots of the lag polynomial are found as the solutions to

1− φ1z − φ2z
2 = 0 (68)

which are at

z1 =
φ1 −

√
φ2
1 + 4φ2

−2φ2
, z2 =

φ1 +
√
φ2
1 + 4φ2

−2φ2
. (69)

These will be real as long as φ2
1 + 4φ2 ≥ 0.

If you have forgotten how to find the roots of a quadratic, consider the general problem of finding the
solutions of the second order polynomial (quadratic function)

ax
2
+ bx+ c = 0

which will be

x1 =
−b−

√
b2 − 4ac

2a
, x2 =

−b+
√
b2 − 4ac

2a
.

There will always be 2 roots, possibly complex and repeated (Fundamental theorem of Algebra).
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φ1 −−−−−→

−−
−−
−→

φ2

Figure 2: Stability region of an AR(2) model.
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Numerical Example AR(2) with real roots

Let Xt follow an AR(2) process of the form
(
1− φ1L− φ2L

2
)
Xt = Zt, with

parameters φ1 = 1.5, φ2 = −0.56. The lag polynomial is then

φ (z) = 1− 1.5z + 0.56z2.

Plugging the values for φ into (69) yields the roots z1 = 1.4286 and z2 = 1.25.
These are both greater than 1 in absolute value hence the AR(2) process is
stable/stationary.

The factored roots (1− λ1z) (1− λ2z) are λ1 = 0.7 and λ2 = 0.8 and we can easily
see that λ−1

i = zi.
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(b) Factored roots

Figure 3: Roots of the AR(2) process.
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(a) Theoretical ACF of the AR(2)
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(b) Theoretical PACF of the AR(2)

Figure 4: Theoretical ACFs and PACFs of the AR(2) process.
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Numerical Example Stable AR(2) with complex roots

Let the AR(2) parameters now be φ1 = 1.4, φ2 = −0.85. The lag polynomial is
given by

φ (z) = 1− 1.4z + 0.85z2

which has complex roots z1,2 = 0.8235± 0.7059i with modulus√
0.82352 + 0.70592 = 1.0847 > 1.

The factored roots (1− λ1z) (1− λ2z) of (λ2 − φ1λ− φ2) are
λ1,2 = 0.7000± 0.6000i with modulus

√
0.70002 + 0.60002 = 0.9220.

We can again easily check that λ−1 = z where the inverse of a complex number is
computed as

z−1 =
z+
|(z−)2| (70)

where z+ = a+ bi (z− = a− bi) and a and b are the coefficients of the complex
number representation x = a+ bi.

This yields z+ = 0.8235 + 0.7059i and z− = 0.8235− 0.7059i so that

z−1 =
0.8235 + 0.7059i

| (0.8235− 0.7059i)2 |
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=
0.8235 + 0.7059i

1.1764

= 0.7000 + 0.6000i.
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Figure 5: Plots of the theoretical ACFs and PACFs from AR(2) with complex roots.
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Figure 6: Time series plot of the AR(2) process with complex roots.
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Mean of an MA(q) process

Proposition (Mean)

Let Xt be generated by
Xt = c+ θ (L)Zt (71)

where Zt ∼WN
(
0, σ2

)
and θ (L) = 1 + θ1L+ θ2L

2 + · · ·+ θqL
q. Then

µ = E (Xt) = c.

Proof.

Taking expectations of (71) we have

E (Xt) = E (c) + E [θ (L)Zt]

E (Xt) = c+ θ (L)E [Zt]

E (Xt) = c

because Zt ∼WN
(
0, σ2

)
, hence uncorrelated at different time periods.
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Note: We did not make any statements about stationarity when defining the MA(q)
process. ⇒ an MA process is always stationary.

Autocovariance of an MA(q) process

Proposition (Autocovariance)

The process in (71) has autocovariances given by

γ(j) =


σ2

q−j∑
i=0

θiθi+j for j ≤ q (72a)

0 for j > q (72b)

for all j = 0, 1, 2, . . . , where

q−j∑
i=0

θiθi+j = (θj + θ1θj+1 + · · ·+ θqθq−j) (73)

and θ0 = 1.
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Proof.

Expand the Cov(Xt, Xt−j) = E [(Xt − µ) (Xt−j − µ)] terms to yield

Cov(Xt, Xt−j) = E[(Zt + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q)

× (Zt−j + θ1Zt−1−j + θ2Zt−2−j + · · ·+ θqZt−q−j)]

and then match all the time periods of Zs for all s = 1, . . . , j and take expectations. Since

the Zt are uncorrelated across time, we get the desired result.

82 / 127



ARMA Algebra
Properties of MA(q) models

Example: MA(4)

Let Xt = Zt + θ1Zt−1 + θ2Zt−2 + θ3Zt−3 + θ4Zt−4. Expanding (72) (ie.∑q−j
i=0 θiθi+j) we have for j = 0 (the variance)

γ (0) =
(
1 + θ21 + θ22 + θ23 + θ24

)
σ2,

and for 0 < j ≤ q = 4

γ (1) = (θ1 + θ1θ2 + θ2θ3 + θ3θ4)σ2

γ (2) = (θ2 + θ1θ3 + θ2θ4)σ2

γ (3) = (θ3 + θ1θ4)σ2

γ (4) = (θ4)σ2.

For any j > q = 4 we get γ (j) = 0.
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Now it should be evident that an MA(q) process has:

γ (j) =

{
θqσ

2 if j = q

0 for all j > q.
(74)

This result is formalised by the following proposition on q−correlated series given in
Brockwell and Davis (2002), page 50.

Proposition (q−correlated series)

If Xt is a stationary q-correlated time series with mean 0, then it can be represented
as an MA(q) process.

⇒ only need to look at the correlation structure of the various White Noise
components to work out the MA order of a process.
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ACF and PACF

The ACF of an MA(q) process, is also found from the relation

ρ (j) =
γ (j)

γ (0)
(75)

where ρ (j) inherits the decay properties of γ (j) so that for j > q, ρ (j) = 0.

The PACF of an MA(q) from the Yule Walker relations

� we can again use the Durbin-Levinson Algorithm or

� or Cramer’s rule on Yule Walker
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Example PACF of MA(2)

Consider the following MA(2) process, where

Xt = Zt + θ1Zt−1 + θ2Zt−2

where

ρ (1) = (θ1 + θ1θ2)/(1 + θ21 + θ22)

and

ρ (2) = θ2/(1 + θ21 + θ22)

and we have ρ (3) = ρ (4) =, · · · , ρ (h) = 0.

Then φ11 = ρ (1) and

φ22 =
ρ (2)− ρ (1)2

1− ρ (1)2
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φ33 =
ρ (1)3 + ρ (2) [ρ (1) {ρ (2)− 2}]
[ρ (2)− 1] [2ρ (1)2 − ρ (2)− 1]

φ44 =
ρ(1)4 − 2ρ(1)2ρ(2)2 + 3ρ(1)2ρ(2) + ρ(2)4 − ρ(2)2

ρ(1)4 − 2ρ(1)2ρ(2)2 + 4ρ(1)2ρ(2)− 3ρ(1)2 + ρ(2)4 − 2ρ(2)2 + 1

...

Higher order PACFs follow a similar pattern.

Since the PACF is a function of ρ(1) and ρ(2) and these are non-zero

⇒ PACF for an MA process will decay slowly towards zero.
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Summary of ACF and PACF structure of MA(q) Models

Process ACF PACF

White Noise Zt 0 for all j 0 for all j

MA(1) ρ(j) = θ
(1+θ2)

for j = 1 and 0 for j > 1 exponential decline to 0

MA(q) non-zero for first q lags and 0 for j > q exponential decline to 0

Table 3: ACF and PACF properties of an MA(q) process.
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Invertibility of MA(q) models

� No assumptions about the θ(L) polynomial have been made regarding
stationarity

� But need similar restrictions to have an invertible MA(q) model.

Definition (Invertibility)

The MA(q) process Xt = c+ θ (L)Zt, Zt ∼WN
(
0, σ2

)
is said to be invertible if the

roots of θ (z) are greater than 1 in absolute value (|z| > 1), or equivalently, if

θ (z) = 1 + θ1z + θ2z
2 + · · ·+ θqz

q 6= 0, ∀ |z| ≤ 1.

Alternatively, in terms of the roots of the factored polynomial

(1 + θ1z + θ2z
2 + · · ·+ θqz

q) = (1− λ1z) (1− λ2z) . . . (1− λqz)

the MA(q) process is said to be invertible if |λi| < 1, ∀i = 1. . . . , q.
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Invertibility is needed:

a) to have a unique mapping between the ACF and the {θi}qi=1 parameters
(identification)

b) to have an AR(∞) representation of the MA(q) process.

c) to be able to estimate MA models by Maximum Likelihood.

� If the θ(L) polynomial is not invertible, can have, in general up to 2q

representations of the ACF of the MA(q) in terms of the {θi}qi=1

� Will not be able to tell which set of {θi}qi=1 parameters generated the
observed series Xt.

– referred to in the econometrics literature as an identification problem.

90 / 127



ARMA Algebra
Properties of MA(q) models

� Working with a non-invertible MA process is not a problem in general

– model can be solved forward to get the Xt representation,

– but will need all future values of X

– working with a non-invertible MA process is not very practical.

� the value of Zt associated with the invertible MA representation is frequently
referred to as the fundamental innovation for Xt.

Having fundamental representation for process means we have same information
regardless of whether we express an ARMA as an MA(∞) or as an AR(∞).

� we can therefore move between these definitions without loosing any
information about the process.
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� when an MA process is not invertible, we can always reformulate the model by
backing out the θ parameters that correspond to the inverse of the
non-invertible roots.

� inverses of non-invertible roots will be invertible,

– corresponding θ parameters yield an invertible MA model with the same first and
second moments as the non-invertible representation.

� Invertibility condition ensures that, as long as
∑∞
j=0 |πj | <∞ (the coefficients

of the AR(∞) representation), the AR(∞) representation of an MA(q) process
exists.
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That is, if θ (z) 6= 0, ∀ |z| ≤ 1, then we can write

Xt = c+ θ (L)Zt

θ (L)−1Xt = θ (L)−1 c+ Zt

Xt = θ (1)−1 c+
∞∑
j=1

πjXt−j + Zt (76)

which is AR(∞), where {πj}∞j are determined from {θi}qi=1 of MA(q).
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Example Invertibility/Identification

Let Xt be an MA(1) with the representation

Xt = θ (L)Zt

Xt = (1 + θ1L)Zt

= Zt + θ1Zt−1.

The autocovariances of the process are

γ (0) = (1 + θ21)σ2

γ (1) = θ1σ
2.
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The ACF is then

ρ (1) =
γ (1)

γ (0)

=
θ1

(1 + θ21)
. (77)

Note that for any θ1, |ρ (1)| ≤ 1
2

. Re-arranging (77) to get the relation

ρ (1) θ21 − θ1 + ρ(1) = 0

we will get the following two solutions for θ:

θ
(1)
1 =

1−
√

1− 4ρ (1)2

2ρ (1)
, θ

(2)
1 =

1 +
√

1− 4ρ (1)2

2ρ (1)
(78)
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For example, for the two solutions in (78)

θ
(1)
1 = 0.5, θ

(2)
1 = 1/θ

(1)
1 = 2

we get the ACF value of ρ (1) = 0.4.

Need another restriction to identify the value of the θ1 parameter from ρ (1).

⇒ choose the invertible model, ie., the model with the root of the factored
polynomial λ = |θ1| < 1, which here is the first root θ

(1)
1 = 0.5.

� with λ = θ
(1)
1 , we have that z = 1/θ

(1)
1 = 2, so the root of the lag polynomial

is bigger than 1.
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Figure 7: Plot of the mapping between ρ(1) and θ1 for an MA(1), where ρ(1) = θ1/(1+ θ21).
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Example Non-invertible MA(2) to invertible MA(2)

Let Xt follow an MA(2) process, taking the form

Xt = θ(L)Zt (79)

Xt = (1 + θ1L+ θ2L
2)Zt (80)

= Zt + θ1Zt−1 + θ2Zt−2

with θ1 = −3.5 and θ2 = −2 and Zt ∼WN(0, 1). We then have

θ(z) = 0

(1− 3.5z − 2z2) = 0

at z1 = −2 and z2 = 0.25.
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This implies that the factored roots are λ1

θ(z) = (1− λ1z)(1− λ2z)

0 = (1− [z−1
1 ]︸ ︷︷ ︸
λ1

z)(1− [z−1
2 ]︸ ︷︷ ︸
λ2

z) (81)

= (1 + 0.5z)(1− 4z) (82)

ie., λ1 = −0.5 and λ2 = 4.

⇒ modulus of z1 (λ1) is greater (smaller) than 1, modulus of z2 (λ2) is less
(greater) than 1.

⇒ the MA(2) is not invertible.
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The ACF can be simply found from (73) (and deflating by γ(0)) as

ρ(1) =
(θ1 + θ1θ2)

(1 + θ21 + θ221)
=

(−3.5 + 7)

(1 + 3.52 + 22)
= 0.20290

ρ(2) =
θ2

(1 + θ21 + θ221)
=

−2

(1 + 3.52 + 22)
= −0.11594

ρ(3) = 0

...

From (82), the problematic root is z2 (λ2).

⇒ create invertible MA(2) process with same second moment structure as
non-invertible one by inverting non-invertible root
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Create

θ(z)+ = (1 + 0.5z)(1− 1
4
z)

θ(z)+ = 1 + 0.25z − 0.125 z2 (83)

where

θ+1 = −(λ1 + λ+
2 )

= −(−0.5 +
1

4
)

θ+2 = λ1λ
+
2

= −0.5× 1

4

θ(z)+ denotes the invertible lag polynomial and λ+
2 is the invertible second factored

root computed from λ−1
2 .
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The autocovariances are formed again as

ρ(1) =
(θ1 + θ1θ2)

(1 + θ21 + θ221)
=

(0.25− 0.25× 0.125)

(1 + 0.252 + 0.1252)
= 0.20290

ρ(2) =
θ2

(1 + θ21 + θ221)
=

−0.125

(1 + 0.252 + 0.1252)
= −0.11594

ρ(3) = 0

...

102 / 127



ARMA Algebra
Properties of MA(q) models

0 10 20 30 40 50
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

0.25

(a) θ(z) = (1− 3.5z − 2z2)
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(b) θ(z)+ = (1 + 0.25z − 0.125 z2)

Figure 8: Plots of the theoretical ACFs of the non-invertible and invertible MA(2) models.
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Moving between AR, MA and ARMA representations

Recall that a general stationary and invertible ARMA(p,q) model is defined as

φ(L)Xt = c+ θ(L)Zt, (84)

where Zt ∼WN(0, σ2), and both φ(L) and θ(L) are invertible.

� will use the commonly followed notational convention to denote by ψ(L) the
weights of the MA(∞) representation of a general ARMA(p, q) model and

� will use π(L) to denote the corresponding AR(∞) representation.
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Definition (ARMA to MA(∞))

Let φ (L)Xt = c+ θ (L)Zt be a stationary and invertible ARMA(p, q) process. Then

the coefficients ψ (L) of the MA(∞) representation, where ψ (L) = θ(L)
φ(L)

are given by
the following recursion:

ψj = θj +

p∑
k=1

φkψj−k, ∀j = 0, 1, 2, . . . , (85)

where ψi = 0 for i < 0, θ0 = 1, θj = 0 for j > q. So the ARMA(p, q)

φ (L)Xt = c+ θ (L)Zt

Xt =
c

φ (1)
+
θ (L)

φ (L)
Zt

Xt =
c

φ (1)
+ ψ (L)Zt

becomes an MA(∞), where the ψj coefficients are determined by (85).
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Definition (ARMA to AR(∞))

Let φ (L)Xt = c+ θ (L)Zt be a stationary and invertible ARMA(p, q) process. Then

the coefficients π (L) of the AR(∞) representation, where π (L) = φ(L)
θ(L)

are given by
the following recursion:

πj = −φj −
q∑
k=1

θkπj−k, ∀j = 0, 1, 2, . . . , (86)

where πi = 0 for i < 0, φ0 = −1, φj = 0 for j > p. So the ARMA(p, q)

φ (L)Xt = c+ θ (L)Zt

φ (L)

θ (L)
Xt =

c

θ (1)
+ Zt

π (L)Xt =
c

θ (1)
+ Zt

becomes an AR(∞), where the πj coefficients are determined by (86).
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Start with the relation

ψ (L) =
θ (L)

φ (L)

φ (L)ψ (L) = θ (L) (87)

where, after we expand the polynomial terms, we get:

φ (L)ψ (L) = θ (L)

(1− φ1L− φ2L
2 − φ3L

3 . . .) ×

(ψ0 + ψ1L+ ψ2L
2 + ψ3L

3 . . .) = (1 + θ1L+ θ2L
2 + θ3L

3 . . .).
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To recover the coefficients of Ψ(L), we need to match the coefficients of the powers
in L of the columns on the left to those on the right.

This gives us the recursions

ψ0 = 1 [for L0]

ψ1 − φ1ψ0 = θ1 [for L1]

ψ2 − φ1ψ1 − φ2ψ0 = θ2 [for L2]

ψ3 − φ1ψ2 − φ2ψ1 − φ3ψ0 = θ3 [for L3] (88)

...

ψj −
p∑
k=1

φkψj−k = θj .

last line in (88) yields the recursive formula shown in (85)
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Properties of ARMA(p, q) models

Recall main objective of Box-Jenkins modelling is to approximate infinite lag
polynomial Ψ(L) by ratio of finite (and parsimonious) polynomials θ(L) and φ(L).

These finite polynomials make up the AR and MA parts of the joint ARMA model.
Let us, therefore, define the properties of ARMA(p,q) processes.

Definition (Mean of ARMA(p, q))

Let φ (L)Xt = c+ θ (L)Zt be stationary and invertible ARMA(p, q) model, then the
mean of Xt can be found from the MA(∞) represention

E (Xt) =
c

φ (1)
+
θ (L)

φ (L)
E (Zt) . (89)

Hence, E (Xt) = c/ (1− φ1 − φ2 − . . .− φp) .
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Definition (Autocovariance of ARMA(p, q))

Let X̃t =
(
Xt − c

φ(1)

)
= θ(L)

φ(L)
Zt. Then the Autocovariance of X̃t can be easily

found from the MA(∞) representation, with ψ (L) = θ(L)
φ(L)

and ψ0 = 1 as defined in

(85) and γ(j) as defined for an MA(∞) model, that is:

γ (j) = σ2
∞∑
i=0

ψiψi+j . (90)

Note: ARMA processes inherits

� stationarity (stability) property from AR(p) part and

� invertibility property from MA(q) part.
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Order identification in ARMA models

ACF and PACF cannot be used to identify the order of a stationary and invertible
ARMA(p, q) model

� because the AR(p) and MA(q) coefficients get scrambled up in the ACFs and
PACFs.

� no easy way to determine cut-off points in the ACFs or PACFs that would
allow the lag order to be identified

As a visual example, consider the ARMA(3,2) model given by

(1− 1.3L+ 0.8L2 + 0.1L3)Xt = (1 + 0.4L− 0.2L2)Zt (91)

Corresponding plots of the ACF and PACF shown in Figure (9) below. It should be
clear from this plot that there are no visible lag-order cut-off points.
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(a) ACF of ARMA(3,2)
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(b) PACF of ARMA(3,2)

Figure 9: Plots of the theoretical ACF and PACF of the ARMA(3,2) model given in (91).
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A few different ways to see the scrambling up of the ACF/PACF algebraically.

1) Transform the ARMA(3,2) to an MA(∞) and then compute the
autocovariance (ACV) as for the MA(q) model. That is, form

ψ0 = 1

ψ1 = φ1ψ0 + θ1

ψ2 = φ1ψ1 + φ2ψ0 + θ2

ψ3 = φ1ψ2 + φ2ψ1 + φ3ψ0

ψl = φ1ψl−1 + φ2ψl−2 + φ3ψl−3, for all l > 3

and then plug the obtained values into ACV formula for MA.
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2) Multiply the ARMA process φ(L)Xt = θ(L)Zt, Zt ∼WN(0, σ2) by Xt−j and
then take expectations. This yields

γ (j) = φ1γ (j − 1) + φ2γ (j − 2) + . . .+ φpγ (j − p)︸ ︷︷ ︸
from AR(p) part

+E (Xt−jZt)︸ ︷︷ ︸
=σ2 if j=0, 0 otherwise

+ θ1E (Xt−jZt−1) + θ2E (Xt−jZt−2) + . . .+ θqE (Xt−jZt−q)︸ ︷︷ ︸
from MA(q) part

.
(92)

For the AR(p) earlier we had all the MA terms being zero, so need to evaluate
E(Xt−jZt) term for j = 0, 1, 2, . . .

This term was equal to σ2 for j = 0 and 0 for j > 0. Now we need to find
expressions for E(Xt−jZt−1), E(Xt−jZt−2), . . . , E(Xt−jZt−q) that also enter the
relation in (92).
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Let us define the following relations that will help us in determining the remaining
expressions from the MA(q) part (92).

Let E(XKZL) be the correlation s = (K − L) periods apart between X and Z.
Then define

E(XKZL) =

{
r(s) for all s = 0, 1, 2, 3, . . .

0 s < 0.
(93)

Note that the second relation in (93) follows from the fact that E(XtZt+1),
E(XtZt+2), . . . = 0 (why?).

What we need to find are the values for r(s), s = 0, 1, 2, 3, . . . which we can do by
means of recursions.

To see this, take the ARMA(p, q) specification above and multiply the relation by
Zt−j and take expectations.
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This yields

E(XtZt−j) = φ1E(Xt−1Zt−j) + φ2E(Xt−2Zt−j) + . . .+ φpE(Xt−pZt−j) + E (Zt−jZt)

+ θ1E (Zt−jZt−1) + θ2E (Zt−jZt−2) + . . .+ θqE (Zt−jZt−q) .

(94)

Now, evaluating this expression for j = 0, 1, 2, 3 . . . gives us:

r(0) = σ2

r(1) = φ1r(0) + θ1σ
2

r(2) = φ1r(1) + φ2r(0) + θ2σ
2

r(3) = φ1r(2) + φ2r(1) + φ3r(0) + θ3σ
2 (95)

r(4) = φ1r(3) + φ2r(2) + φ3r(1) + φ4r(0) + θ4σ
2
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r(5) = φ1r(4) + φ2r(3) + φ3r(2) + φ4r(1) + φ5r(0)︸ ︷︷ ︸
terms from AR(p) part

+ θ5σ
2︸︷︷︸

term from MA(q) part

...

r(j) = φ1r(j − 1) + φ2r(j − 2) + . . .+ φj−2r(2) + φj−1r(1) + φjr(0)︸ ︷︷ ︸
some of these are zero if p<j

+ θjσ
2︸︷︷︸

=0∀j>q.

.

(96)

Since E (Xt−jZt−1) = r(j − 1), E (Xt−jZt−2) = r(j − 2), etc., we can see that the
expectations in the MA(q) part in (92) can be replaced by the recursions in (95).

These will be functions of parameters of φ(L) and θ(L) lag polynomials and not of
γ(·), so will be able to solve the p+ 1 equations from γ(0) to γ(p) uniquely.

Then take difference equations structure of the AR(p) part to compute any higher
order autocovariance, ie., for j > p.
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Example ARMA(3,2)

Suppose we have the following ARMA(3, 2) process:

Xt = φ1Xt−1 + φ2Xt−2 + φ3Xt−3 + Zt + θ1Zt−1 + θ2Zt−2 (97)

In order to compute the ACV, need r(s) from the recursive formulas above.

Multiply two sides of the ARMA equation in (97) by Zt−j , ∀j = 0, 1, 2, 3, . . . and
take expectations to yield:

r(0) = σ2

r(1) = φ1r(0) + θ1σ
2 = σ2(φ1 + θ1)

r(2) = φ1r(1) + φ2r(0) + θ2σ
2 = σ2(φ2

1 + φ1θ1 + φ2 + θ2)

...

r(j) = φ1r(j − 1) + φ2r(j − 2) + φ3r(j − 3), j ≥ 3.
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We can now multiply the two sides of the ARMA by Xt−j , ∀j = 0, 1, 2, 3, . . . and
take expectations, which yields:

γ(0) = φ1γ(1) + φ2γ(2) + φ3γ(3) + r(0) + θ1r(1) + θ2r(2)

γ(1) = φ1γ(0) + φ2γ(1) + φ3γ(2) + θ1r(0) + θ2r(1)

γ(2) = φ1γ(1) + φ2γ(0) + φ3γ(1) + θ2r(0) (98)

γ(3) = φ1γ(2) + φ2γ(1) + φ3γ(0).
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We find a system of four equations with four variables in (98)

⇒ can be solved to obtain a unique solution for γ(0) to γ(3).

The other ACVs may be derived iteratively from the recursion:

γ(j) = φ1γ(j − 1) + φ2γ(j − 2) + φ3γ(j − 3), j > 3.
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Sums of AR and MA processes

Definition (Sum of two MAs)

If the WN sequences of two MA models MA(q1) and MA(q2) are uncorrelated, then
MA(q1) +MA(q2) = MA(max {q1, q2}).

Definition (Sum of two ARs)

If the WN sequences of two AR models AR(p1) and AR(p2) are uncorrelated, then
AR(p1) +AR(p2) = ARMA(p1 + p2,max {p1, p2}).
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Exercises

1) Show that the process
Xt = A cos(wt) + B sin(wt), t ∈ Z, (99)

is stationary and find its mean and autocovariance function. Assume that A and B are uncorrelated
random variables with mean 0 and variance 1 and that w is a fixed frequency in the interval [0, π].

2) Find the ACVF of the time series

Xt = Zt + 0.3Zt−1 − 0.4Zt−2, (100)

where {Zt} ∼ WN(0, 1).

3) Show that the autoregressive equations

Xt = φ1Xt−1 + Zt, t ∈ Z, (101)

where {Zt} ∼ WN(0, 1) and |φ1| = 1, have no stationary solutions.

4) Let {Yt} be the AR(1) plus noise time series defined by

Yt = Xt +Wt,

where {Wt} ∼ WN(0, σ2
W ), {Xt} is the AR(1) process

Xt − φXt−1 = Zt, {Zt} ∼ WN(0, σ
2
Z), (102)

and E[WsZt] = 0 for all s and t.
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a) Show that {Yt} is stationary and find its autocovariance function.

b) Show that the time series Ut = Yt − φYt−1 is 1-correlated and hence an MA(1) process.

5) Consider the ARMA(2, 1) process defined by the equations

Xt − 0.75Xt−1 + 0.125Xt−2 = Zt + 1.25Zt−1, {Zt} ∼ WN(0, σ
2
).

Is this process stationary and invertible?

6) Determine which of the following ARMA processes are stationary and which of them are invertible.
(In each case {Zt} denotes white noise.)

a) Xt + 0.2Xt−1 − 0.48Xt−2 = Zt.

b) Xt + 1.9Xt−1 + 0.88Xt−2 = Zt − 0.4Zt−1 + 0.04Zt−2.

c) Xt + 0.6Xt−1 = Zt + 1.2Zt−1.

d) Xt + 1.8Xt−1 + 0.81Xt−2 = Zt.

For those processes that are stationary, compute the first six coefficients ψ0, ψ1, . . . , ψ5 of the
MA(∞) representation of {Xt}.
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Exercises

7) Show that the two MA(1) processes

Yt = Zt + θZt−1, {Zt} ∼ WN(0, σ
2
)

and

Yt = Z̃t +
1

θ
Z̃t−1, {Z̃t} ∼ WN(0, σ

2
θ
2
),

where 0 < |θ| < 1, have the same autocovariance function.

8) Consider the following MA(2) process

Xt = µ+ Zt +
7

2
Zt−1 − 2Zt−2, {Zt} ∼ WN(0, σ

2
).

Show that this process is not invertible. Find an invertible MA(2) process with the same ACF as the
process given above.

9) Find the autocovariance and autocorrelation functions of the MA(2) process

Xt = Zt + θ1Zt−1 + θ2Zt−2, {Zt} ∼ IID(0, σ
2
).

Now, set θ1 = − 17
10 and θ2 = −2. Compute the ACVF and ACF. Show that this MA(2) is not

invertible.
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Exercises

10) Let us consider the process

Xt = Zt + bZt−1 + bρZt−2 + bρ
2
Zt−2 + . . . , {Zt} ∼ WN(0, σ

2
) and |ρ| < 1.

a) Show that this MA(∞) process is stationary.

b) For which value of b is the process an AR(1)? Show that for any other finite value of b, the
process is an ARMA(1,1) and identify its parameters.

11) Compute the ACF and PACF of the AR(2) process

Xt = 0.8Xt−2 + Zt, {Zt} ∼ WN(0, σ
2
).

12) Show that the value at lag 2 of the partial ACF of the MA(1) process

Xt = Zt + θZt−1, t ∈ Z, {Zt} ∼ WN(0, σ
2
),

is given by

α(2) = −
θ2

1 + θ2 + θ4
.
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