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Method of Moments Estimation
Overview/Review

Method of Moment Estimation (MoM)

So far we have encountered OLS and MLE as ”good estimators” (in a statistical
sense) of the population parameters of interest based on a given random sample of
data.

As we will analyse the problem of correlation between the regressors X and the error
term u, it is useful here to introduce another 3rd estimation principle, known as the
Method of Moments (MoM)

� MoM is used when the most important assumption of E(ui|Xi) = 0 in OLS is
violated

The concept of ”moments” and its use in finding parameter estimates was first
introduced by Karl Pearson in the late 19th and early 20th century

� thus a bit earlier than MLE by Ronald Fisher

3 / 133

Method of Moments Estimation
Overview/Review

� Fisher’s MLE in fact came as a response to Pearson’s MoM, which Fisher
regarded in many ways as sub-optimal

– Fisher’s famous quote ”wasting your time fitting curves by moments, eh!” sums up
his rather negative attitude towards MoM.

Although MLE is the only general class of estimators that is efficient because it
reaches the Cramér-Rao lower bound, MLE has a cost.

� it requires a full probabilistic description of the data in terms of the Likelihood
function

– sometimes this is implicitly given by the model that one is trying to estimate

– other times it needs to be assumed
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The advantage of MoM estimation is that one only needs to specify (or know) a set
of ”moment conditions” to estimate the population parameters of interest.

� so the information (or assumption) requirement is much weaker than for MLE

� this comes at the cost of having a general loss of efficiency (MoM does not
reach the Cramér-Rao lower bound in general!)

– but there exist many situations when MoM and MLE not only yield the same
estimator, but also have the same variance of the estimator

– therefore, MoM can be as efficient as MLE.
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Expected Values and Moments

Recall that in statistics, the expected value of a RV (or a functional transformation
of a RV or sets of RVs) is called a moment.

� ie., E(ui), E(Xi),

� E(X2
i ), E[ln(ui)]

� E(uiXi), E(u2
iXi) etc. are all examples of moments.

The kth (raw) moment of RV y (taken at the origin) is defined as:

µ′k = E(yk) (1)

=

∫
y

yk f(y)︸︷︷︸
PDF of y

dy
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with a corresponding sample analogue, the (raw) sample moment or estimator
generating equation (EGE) being

µ̂′k =
1

n

n∑
i=1

yk. (2)

Keep in mind here that µ′k is the kth ”moment at the origin” and not the ”centered
moment”.

The kth centered moment is

E[(y − µ′1)k]

where

µ′1 = E(y1) = E(y)

ie., just the unconditional moment or first moment.
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For instance, the second centered moment would be the variance of y, ie.

Var(y) = E[(y − µ′1)2]

= E[y2]− [µ′1]2

= µ′2︸︷︷︸
second moment at origin E(y2)!

−

first moment at origin squared!︷︸︸︷
µ2.
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The MoM principle

The MoM principle effectively sets the population and the sample moments equal to
one another.

This is done by defining a moment condition and setting its expectation equal to zero
and then replacing the population moment condition with the EGE to get an
estimate.

For the raw moment relation in (1), this means that we would specify the moment
condition as:

mi(µ
′
k) = yki − µ′k

for {yi}ni=1 an i.i.d. sample and given k, and then form the population moment
conditions as:

E[mi(µ
′
k)] = 0 (3)
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E[yki − µ′k] = 0

E[yki ] = µ′k

and then replacing E[·] by the EGE 1
n

∑n
i=1[·], yielding

1

n

n∑
i=1

[mi(µ̂
′
k)] = 0

1

n

n∑
i=1

[yki ] = µ̂′k.

In general, one always specifies a moment condition which involves the data and the
parameters of interest.
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Notice that the MoM estimator requires ”equations to be solved”

� ie., we set the population moment condition equal to zero in (3), where the
population moments are functions of the parameters of interest!

� in general there will be M equations for p unknown parameters

There are three possible scenarios when we need to solve a set of M equations for p
unknown parameters (# means Number )

1) # of unknowns > # of equations ⇒ unidentified system

2) # of unknowns = # of equations ⇒ just identified system

3) # of unknowns < # of equations ⇒ overidentified system
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Scenario 1) we cannot estimate the model parameters.

⇒ no solution exists

Scenario 2) we have a just identified system which can be estimated by MoM.

⇒ exactly one solution exists

Scenario 3) we have more information than needed,

⇒ infinitely many solutions exist.

For the last problem in Scenario 3) we then have the following choices:

� we can either discard some equations until we have the same No. of equations
as parameters

� or use an estimation techniques that compresses the extra information to the
same dimension as the number of parameters
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Fact: Asymptotic Normality and Consistency of MoM

Let mi(θ) be an M dimensional vector of moment conditions such that
E[mi(θ)] = 0 and let θ be a p = M dimensional vector or parameters of interest.
Also, let θ̂MoM be the method of moment (MoM) estimator of θ, given a sample of
size i = 1, . . . , n observations. Then

√
n(θ̂MoM − θ)→ N(0,V(θ)) (4)

where
V(θ) =

(
[d′]−1Var[mi(θ)][d]−1)

and

d = E

(
∂mi(θ)

∂θ′

)
where we replace θ with its consistent estimate θ̂MoM in V(θ) to obtain a feasible
estimate of V(θ).
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Example 1: Bernoulli distribution

Let {xi}ni=1 be a random (i.i.d.) sample of size n from a Bernoulli distribution, with
E(xi) = p and Var(xi) = p(1− p), where p ∈ [0, 1] is the probability of success
parameter.

The moment condition is:

mi(p) = xi − p

which then yields the population moment condition

E[mi(p)] = 0

⇔ E(xi − p) = 0

with the corresponding EGE being

1

n

n∑
i=1

(xi − p) = 0
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⇔ 1

n

n∑
i=1

xi = p.

So p̂MoM = x̄, ie. the sample mean. Now the variance is

Var(p̂MoM) =
1

n
[d′]−1Var[mi(p)][d]−1

where

Var[mi(p)] = Var(xi − p)

= Var(xi)

= p(1− p)
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and

d = E

(
∂mi(p)

∂p

)
= −1.

This yields

Var(p̂MoM) =
1

n
[−1]−1[p(1− p)][−1]−1

=
1

n
p(1− p)

and replacing p with a consistent estimate gives

V̂ar(p̂MoM) =
1

n
p̂MoM(1− p̂MoM)

as the estimate of the variance of p̂MoM.
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Example 2: Exponential distribution

Let {xi}ni=1 be a random (i.i.d.) sample of size n from an exponential distribution
with xi ∈ [0,∞), with E(xi) = θ and Var(xi) = θ2, where θ > 0 is a scale
parameter.

The moment condition is:
mi(θ) = xi − θ

which then yields the population moment condition

E[mi(θ)] = 0

⇔ E(xi − θ) = 0

with the corresponding EGE being

1

n

n∑
i=1

(xi − θ) = 0
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⇔ 1

n

n∑
i=1

xi = θ.

So θ̂MoM = x̄, ie. the sample mean again. Now for the variance we need

Var[mi(θ)] = Var(xi − θ)

= Var(xi)

= θ2

and we have again

d = E

(
∂mi(θ)

∂θ

)
= −1.
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This yields

Var(θ̂MoM) =
1

n
[−1]−1[θ2][−1]−1

=
1

n
θ2

and replacing θ with a consistent estimate yields

V̂ar(θ̂MoM) =
1

n
θ̂2

MoM

as the estimate of the variance of θ̂MoM.
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Example 3: Poisson distribution

Let {xi}ni=1 be a random (i.i.d.) sample of size n from a poisson distribution with
xi = 0, 1, 2, . . ., where λ > 0 is a parameter that is related to the number of events
in a fixed time interval.

Note that the first 4 raw moments of xi are:

µ′1 = λ

µ′2 = λ(1 + λ)

µ′3 = λ(1 + 3λ+ λ2)

µ′4 = λ(1 + 7λ+ 6λ2 + λ3).

To make things different this time, let us define z = x2 so that

E(z) = E(x2)
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= µ′2

= λ(1 + λ)

and use the moment condition:

mi(λ) = zi − λ(1 + λ)

which then yields the population moment condition

E[mi(λ)] = 0

⇔ E[zi − λ(1 + λ)] = 0

with the corresponding EGE being
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1

n

n∑
i=1

(zi − (λ+ λ2)) = 0

⇔ λ2 + λ− z̄i = 0.

Now this is a quadratic in λ, so that there are two solutions:

λA =
1

2

√
4z̄i + 1− 1

2

λB = −1

2

√
4z̄i + 1− 1

2
.

Recall that λ > 0 for a Poisson RV, thus we can rule out λB as z̄i = 1
n

∑n
i=1 x

2
i > 0,

and hence the whole term is always negative, even if all xi = 0 in our sample.
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The solution for λA gives then λ̂MoM = 1
2

√
4z̄i + 1− 1

2
as the MoM point estimate

(Note that if z̄i = 0 then we get an inadmissable solution for λ).

Now for the variance we need to find

Var[mi(λ)] = Var[zi − λ(1 + λ)]

= Var(zi)

= E(z2
i )− [E(zi)]

2

= E(x4
i )︸ ︷︷ ︸

=µ′
4

−[λ(1 + λ)]2

= λ(1 + 7λ+ 6λ2 + λ3)− [λ(1 + λ)]2

= λ
(
4λ2 + 6λ+ 1

)
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and we have

d = E

(
∂mi(λ)

∂λ

)
= −(1 + 2λ).

This yields then

Var(λ̂MoM) = [d′]−1Var[mi(λ)][d]−1

=
1

n
[−(1 + 2λ)]−1[λ

(
4λ2 + 6λ+ 1

)
][−(1 + 2λ)]−1

=
1

n
(1 + 2λ)−2λ

(
4λ2 + 6λ+ 1

)
=

1

n

[
λ+

2λ2

(1 + 2λ)2

]
(5)

where we would again replace λ with a consistent estimate λ̂MoM.
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Now if we use the simple moment condition on the mean rather than the second
moment µ′2, we would have

mi(λ) = xi − λ (6)

and thus

E[mi(λ)] = 0

⇔ E[xi − λ] = 0

giving the EGE

1

n

n∑
i=1

(xi − λ) =

x̄ = λ̂MoM.
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The variance of λ̂MoM using the first moment as in (6) is then given by

Var[mi(λ)] = Var(xi − λ)

= Var(xi)

= λ

yielding

Var(λ̂MoM) =
1

n
[λ] (7)

with d = [−1] as before.

We can see that the estimators are different not only in terms of how the point
estimates are computed, but also in terms of their variances.

26 / 133



MoM Estimation Examples
Example 3: Poisson distribution

Nonetheless, both are consistent estimates of λ.

� the increase in the variance from using the moment condition zi − λ(1 + λ)

over xi − λ is 2λ2

(1+2λ)2

� since λ > 0, this is bounded below by 0 and above by limλ→∞
2λ2

(1+2λ)2
= 1

2
.

(see also the plot of 2λ2

(1+2λ)2
in the figure below)
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Figure 1: Amplification Factor for variance of moment condition mi = zi − λ(1 + λ).

28 / 133



MoM Estimation Examples
Example 4: Regression model

Example 4: Regression model

Suppose we have an i.i.d sample of data for {yi, xi}ni=1 from the regression model

yi = β0 + β1xi + ui (8)

where we make the (standard OLS) assumptions:

1) E(ui) = 0 (zero error on average) with Var(ui) = σ2

2) E(ui|xi) = 0 (conditional on xi we have have zero errors on average).

Note that from 1) we have the population relations:

E(ui) = 0 (9)

⇔ E(yi) = β0 + β1E(xi)

⇔ β0 = E(yi)− β1E(xi)
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which yields the EGE for β0

β̂0 = ȳ − β̂1x̄. (10)

The relation involving the conditional moment restriction in 2) yields

E(ui|xi) = 0

xiE(ui|xi) = xi0︸︷︷︸
=0

Ex[xiE(ui|xi)] = Ex[0]

E[uixi] = 0, (11)

where E[uixi] = 0 from (11) can be used as the second (unconditional) moment
restriction.
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Notice here that in (8) we have two population parameters of interest (β0 and β1) so
we need at least two moment conditions to solve for these two parameters.

� one was given in (9) and the second is (11)

Using (11) yields

E(uixi) = 0

E[(yi − β0 + β1xi)xi] = 0

E(yixi) = E(β0xi + β1x
2
i ). (12)

Replacing the expectations again with the EGE and β0 by β̂0 = ȳ − β̂1x̄, yields then
for (12)

yx = x2β̂1 + (ȳ − β̂1x̄)x̄
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yx− ȳx̄︸ ︷︷ ︸
Sample Cov(yi,xi)

= β̂1

(
x2 − x̄2

)
︸ ︷︷ ︸

Sample Var(xi)

(13)

where yx = 1
n

∑n
i=1 yixi, x

2 = 1
n

∑n
i=1 x

2
i .

From (13) we than have

β̂1 =
yx− ȳx̄
x2 − x̄2

=
Sample Cov(yi, xi)

Sample Var(xi)

as for the classical OLS estimator and also for MLE.
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To find the variance, of the (two dimensional vector) β̂MoM =
(
β̂0 β̂1

)′
estimator, we

need again the two terms Var(mi) as well as E(∂mi/∂θ). With

mi =

[
ui
uixi

]
having the property that

E(mi) =

[
0
0

]
we can compute Var(mi) as

Var(mi) = E(mim
′
i)

= E

([
ui
uixi

] [
ui uixi

])
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= E

([
u2
i u2

ixi
u2
ixi u2

ix
2
i

])
=

[
σ2 σ2E(xi)

σ2E(xi) σ2E(x2
i )

]
= σ2

[
1 E(xi)

E(xi) E(x2
i )

]
(14)

where the last two lines follow because of the conditional independence between ui
and xi.

Now to find d = E(∂mi/∂β
′), we need to look at

E

[
∂mi

∂β′

]
= E

[
∂ui/∂β

′

∂uixi/∂β
′

]
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= E

[
∂(yi − β0 − β1xi)/∂β

′

∂(yixi − β0xi − β1x
2
i )/∂β

′

]

= E

[
∂(yi − β0 − β1xi)/∂β0 ∂(yi − β0 − β1xi)/∂β1

∂(yixi − β0xi − β1x
2
i )/∂β0 ∂(yixi − β0xi − β1x

2
i )/∂β1

]
(15)

= E

[
−1 −xi
−xi −x2

i

]

d = −
[

1 E(xi)
E(xi) E(x2

i )

]
(16)

The variance of β̂MoM is then found from combining (16) and (14) as:
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Var(β̂MoM) =
1

n
[d′]−1Var[mi(λ)][d]−1

=
1

n

(
−
[

1 E(xi)
E(xi) E(x2

i )

]−1
)′(

σ2

[
1 E(xi)

E(xi) E(x2
i )

])
(17)

×

(
−
[

1 E(xi)
E(xi) E(x2

i )

]−1
)

(18)

=
1

n
σ2

[
1 E(xi)

E(xi) E(x2
i )

]−1

. (19)

Now the inverse of 2× 2 matrix

A =

[
a b
c d

]
is A−1 =

1

det(A)

[
d −b
−c a

]
where det(A) = ad− cb.
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For the inverse in (19) this means that[
1 E(xi)

E(xi) E(x2
i )

]−1

=
1

E(x2
i )− [E(xi)]2

[
E(x2

i ) −E(xi)
−E(xi) 1

]
.

Replacing E(·) with its EGE and σ2 with a consistent estimate σ̂2, we get the
familiar OLS variance and covariance results:

Var(β̂MoM
1 ) =

1

n
σ2V̂ar(xi)

−1

= σ̂2

[
n∑
i=1

(xi − x̄)2

]−1
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Var(β̂MoM
0 ) =

1

n
σ2Ê(x2

i )V̂ar(xi)
−1

=
1

n
σ2

n∑
i=1

x2
i

[
n∑
i=1

(xi − x̄)2

]−1

Cov(β̂MoM
0 , β̂MoM

1 ) = − 1

n
σ2Ê(xi)V̂ar(xi)

−1

= − 1

n
σ2

n∑
i=1

xi

[
n∑
i=1

(xi − x̄)2

]−1

= −σ2x̄

[
n∑
i=1

(xi − x̄)2

]−1
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Failure of Moment Condition

We have previously seen that the most important OLS assumption is:

E(ui|Xi) = 0 (20)

which implies that

Cov(ui, Xi) = 0

⇔ E(uiXi) = 0 (21)

because it influences the consistency and unbiasedness of the OLS estimator.

This does not go away asymptotically, a the OLS estimator will converge to a pseudo
true value, ie., a value that is the true value plus some bias.
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Some common examples when the assumption E(ui|Xi) = 0 = E(uiXi) fails are
under the following scenarios:

1) Measurement errors or errors in variables

2) Omitted variable bias

3) Simultaneous equation bias

Let us look at each scenario individually.
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Measurement errors or errors in variables

The explanatory variable Xi is measured with an error (or imprecisely)

� this is pretty much a universal problem, especially when dealing with
micro-level data on household behaviour

– often micro level data is collected through surveys, either in written form or by
telephone surveys

– respondents frequently do not recall the exact figures correctly, or are not willing
to disclose the actual figure

– typically happens when respondents are asked about how much money is spent on
certain types of goods, such as alcohol, cigarettes, or how much is earned, or how
much time is dedicated to a task or leisure activity, or when a proxy variable is
used for ability
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� with macroeconomic data, a common example is the use of ”permanent
income” in relation to consumption.

– permanent income is frequently proxied by current income.

As an illustration, consider the following simple example.

Suppose you are interested in a relationship that takes the form

yi = β0 + β1x
∗
i + ui (22)

but the x∗i variable is not observed directly, and all that is available is another
random variable xi which relates to x∗i as:

xi = x∗i + ei (23)

where ei is an i.i.d. random variable with mean 0 and variance σ2
e (think Normal RV

for example, but does not need to be).
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So xi is all that I have to proxy x∗i , where the size of the error of the proxy is
determined by the variance of ei.

We need to make an assumption about the relation between x∗i and ei and ui and ei.

� it is common to assume E(x∗i ei) = 0 as in a ”standard regression” problem.

� it is further frequently assumed that E(uiei) = 0, ie, the two disturbances in
(22) and (23) are uncorrelated.

Now using xi instead of x∗i in the regression relation in (22), we get

yi = β0 + β1(xi − ei) + ui

= β0 + β1xi + ui − β1ei︸ ︷︷ ︸
=vi

= β0 + β1xi + vi.︸︷︷︸
=(ui−β1ei)

(24)
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When using OLS to estimate the model in (24), we implicitly assume the OLS
moment condition E(xivi) = 0.

To see whether this is a valid assumption to make, we need to verify this moment
condition from the assumptions of the model.

Evaluating E(xivi) yields

E(xivi) = E[(x∗i + ei)(ui − β1ei)]

= E[x∗i (ui − β1ei)] + E[ei(ui − β1ei)] (25)

= E(x∗i ui)− β1E(x∗i ei) + E(eiui)− β1E(e2
i ). (26)

Thus, we can see that even if we make the assumptions that E(x∗i ui) = 0,
E(x∗i ei) = 0, and E(eiui) = 0, it still follows that

E(xivi) = −β1E(e2
i )

= −β1σ
2
e 6= 0. (27)
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Notice that σ2
e is the variance of the measurement error in (23)!

� so the larger this variance, the larger will be the bias in the OLS estimator β̂1.

Recall from our standard expansion of the OLS estimator β̂1 for the relation in (24)
(with β0 = 0 for simplicity of exposition), that we had

E(β̂1) = β1 + E

[∑n
i=1 xivi∑n
i=1 x

2
i

]
︸ ︷︷ ︸

bias generating term

(28)

= β1(1− σ2
e/σ

2
x) (29)

where 1
n

∑n
i=1 x

2
i

p−→ σ2
x = Var(xi), so that there will be a wedge between E(β̂1)

and β1 which depends on σ2
e/σ

2
x.
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Omitted variable bias

We have already seen what happens when we forget to include an important
regressor or explanatory variable in Topic 1.

Suppose we assume again the following simple ”true” model (again with β0 = 0 and
E(yi) = E (x1i) = E(x2i) = 0):

yi = β1x1i + β2xi2 + ui (30)

but we estimate

yi = β1x1i + ei (31)

where ei = β2x2i + ui

Now to estimate β1, OLS uses the moment condition E(eixi) = 0, but we see that
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E(eixi) = β2 E(x1ix2i)︸ ︷︷ ︸
=Cov(x1i,x2i)

+E(xi1ui)︸ ︷︷ ︸
=0

,

so this moment condition will only hold in the population if the two regressors x1i

and x2i are orthogonal to one another, ie, are uncorrelated.

� this is only rarely the case, can be when the regressors that are used are
constructed in that way

– ie, the factors retrieved from PCA, residuals and regressors from regression output

Doing the same expansion as in (28) yields the relationship

E(β̂1) = β1 + β2
Cov(x1i, x2i)

Var(x1i)
(32)

so how large the bias is depends on both Cov(x1i,x2i)
Var(x1i)

as well as the magnitude of β2.
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Simultaneous equation bias

Suppose you assume that

yi = β0 + β1xi + ui (33)

but at the same time the xi are determined by the relation

xi = α0 + α1yi + ei. (34)

In such a situation, the explanatory variable xi is said to be an ”endogenous
variable” or a variable that is ”determined within the system”.

If you do not know that the relation in (34) holds for xi and yi, and proceed to
estimate β1 by OLS you will implicitly again assume that the moment condition
E(xiui) = 0 is valid.
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To see if this is the case, we again evaluate

E(xiui) = E[(α0 + α1yi + ei)ui]

= α1E(yiui) [with E(uiei) = 0]

= α1E[(β0 + β1xi + ui)ui]

= α1β1E(xiui) + α1 E(u2
i )︸ ︷︷ ︸

=σ2
u

E(xiui) =
α1σ

2
u

(1− α1β1)
6= 0. (35)
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From (35) we can see that there will be a wedge between E(β̂1) and β1 which will be
related to α1and σ2

u as well as β1 and Var(xi) (from denominator term).

Simultaneous equations models are a specialized field in econometrics, so that we will
devote some more time to them towards the end of these lecture notes.

Most of terminology in IV literature comes from simultaneous equation models
literature.
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Two important things to take away from the above

1) when E(ui|xi) 6= 0, then we will have a biased and inconsistent estimator
when using OLS.
⇒ magnitude of bias will depend on the problem at hand and can sometimes

be not so sever, but other times can be very severe

2) we cannot test whether the correlation between xi and ui is equal to zero!
⇒ replacing the unobserved ui with the fitted ones from OLS, ie., ûi, yields

by definition and construction of the OLS estimator zero, ie., we have:

1

n

n∑
i=1

xiûi = 0

because that is what the FOC of OLS is!
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⇒ any insights into whether the condition E(ui|xi) = 0 is violated needs to
come from economic theory

⇒ need to think about any possible true (or alternative viable) model and
evaluate algebraically by hand what the population moment is under the
scenarios considered

⇒ this may again depend on the assumption of the alternative model
considered if there is not strong theory to suggest a correct model
structure

⇒ most of the time violation will fall in one of the above outlined scenarios.
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Estimation with Instrumental variables

Let us now look at how to estimate the parameters of the simple regression model

yi = β0 + β1xi + ui (36)

using Instrumental Variables (IVs) when the important OLS assumption E(uixi) = 0
does not hold.

Note that we have two unknown parameters in (36), so that we need (at least) two
population moment conditions to estimate β0 and β1.

One will be still

E(ui) = 0

E(yi − β0 − β1xi) = 0

⇔ β0 = E(yi)− β1E(xi). (37)
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Since E(xiui) = 0 fails, we need to find another variable zi for which the population
moment condition E(ziui) = 0 holds.

� this will be our second population moment condition which we need to be able
to solve the system uniquely.

� variable zi is called an ”instrumental variable” (or instrument for short).

We can then form the second population moment condition as:

E(ziui) = 0

E[zi(yi − β0 − β1xi)] = 0

E(ziyi)− β0E(zi)− β1E(zixi) = 0 (38)

and substituting for β0 = E(yi)− β1E(xi) from (37) above, we get
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E(ziyi)− [E(yi)− β1E(xi)]E(zi)− β1E(zixi) = 0

E(ziyi)− E(yi)E(zi)︸ ︷︷ ︸
=Cov(zi,yi)

−β1 [E(zixi)− E(xi)E(zi)]︸ ︷︷ ︸
=Cov(zi,xi)

= 0

so that

β1 =
Cov(zi, yi)

Cov(zi, xi)
. (39)

We can get estimates for β0 and β1 from (37) and (38) by replacing the population
expectation with the sample analogues (ie. the EGE) which yields

β̂IV
0 = ȳ − β̂IV

1 x̄ (40)
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β̂IV
1 =

∑n
i=1(zi − z̄)(yi − ȳ)∑n
i=1(zi − z̄)(xi − x̄)

(41)

where the 1
n

terms in the numerator and denominator of (41) cancel.

Notice from (40) and (41) how the estimate of the intercept term in the regression
has the same structure as before from OLS estimation

� it is still a linear combination of the sample means of x and y

� but with the weight given by β̂IV
1 and not the OLS one β̂OLS

1 .
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Asymptotic Distribution of β̂IV
1

To see what the asymptotic distribution of β̂IV
1 looks like, let us subtract the

unconditional mean of (36) to form

yi − E(yi) = β0 + β1xi + ui − E(β0 + β1xi + ui)

yi − E(yi) = β1[xi − E(xi)] + ui − E(ui)︸ ︷︷ ︸
=0

yi − E(yi) = β1[xi − E(xi)] + ui. (42)

Replacing E (·) with sample analogues again yields

(yi − ȳ) = β1(xi − x̄) + ui. (43)
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Now going back to the IV estimator for β1 in (41), we can replace (yi − ȳ) with the
right hand side of (43) to yield

β̂IV
1 =

∑n
i=1(zi − z̄)(β1(xi − x̄) + ui)∑n

i=1(zi − z̄)(xi − x̄)

= β1 +

∑n
i=1(zi − z̄)ui∑n

i=1(zi − z̄)(xi − x̄)

= β1 +

∑n
i=1 ziui∑n

i=1(zi − z̄)(xi − x̄)
. (44)

To get the asymptotic distribution of β̂IV
1 we can again take probability limits of the

numerator and denominator in (44) above.

58 / 133



Instrumental Variable Estimation
Estimation with Instrumental variables

Doing this yields:

β̂IV
1 = β1 +

=plim ν̄ =E(νi)︷ ︸︸ ︷
plim

1

n

n∑
i=1

ziui

plim
1

n

n∑
i=1

(zi − z̄)(xi − x̄)︸ ︷︷ ︸
=Cov(zi,xi)

(45)

where νi = ziui, which is similar to the standard OLS set up we had earlier.

Due to the assumption of E(ziui) = E(νi) = 0 and plim ν̄ = E(νi), we see that the
IV estimator is consistent as long as E(ziui) = 0 holds.
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We can again invoke a CLT to show that asymptotically

√
n(β̂IV

1 − β1)
d−→ N

(
0,Var

(
β̂IV

1

))
where

Var(β̂IV
1 ) = Var

(
ν̄

Cov(xizi)

)
=

Var (ν̄)

Cov(xizi)2

=
Var (νi)

nCov(xizi)2
(46)

Notice from (46) that this is the general heteroskedasticity robust formula.
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If we further assume that the variance of ui does not change with our instrument zi,
then we can write (46) as

Var(β̂IV
1 ) =

Var(ziui)

nCov(xizi)2

=
Var(zi)Var(ui)

nCov(xizi)2

=
Var(ui)

nVar(xi)
Cov(xizi)

2

Var(zi)Var(xi)︸ ︷︷ ︸
=Corr(xi,zi)2

(47)
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which can be estimated as:

V̂ar(β̂IV
1 ) =

σ̂2
u∑n

i=1(xi − x̄)

1

ρ̂(xizi)2
. (48)

where

� ρ̂(xizi)
2 is the squared sample correlation coefficient between xi and zi, which

in this simple case coincides with the R2 of a regression of xi on a constant
and zi

� σ̂2
u is the (sample) variance of the IV residuals ûi = yi − β̂IV

0 − β̂IV
1 xi.
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General Matrix notation of IV estimation

Recall that we had the general k−variable regression model specified as:

yi = xiβ + ui (49)

where

xi
(1×k)

=
[
x10 x11 · · · x1k

]
, β

(k×1)

=


β1

β2

...
βk


or in matrix form:

y = Xβ + u (50)

where
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y
(n×1)

=


y1

y2

...
yn

 , X
(n×k)

=


x10 x11 · · · x1k

x20 x21 · · · x2k

...
...

. . .
...

xn0 xn1 · · · xnk

 , and u
(n×1)

=


u1

u2

...
yn


with the first entry of X being generally a column of ones and β defined as before.

The MoM estimator of the k unknown parameters would have the (k−dimensional)
population moment condition

E(x′iui)
(k×1)

= 0 (51)

and the corresponding EGE would be

1

n
X′u = 0 (52)
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=



1
n

∑n
i=1 xi0ui

1
n

∑n
i=1 xiiui

1
n

∑n
i=1 xi2ui

...
1
n

∑n
i=1 xikui


︸ ︷︷ ︸

(k×1)

= 0.

Note that the 1/n term does not influence this moment condition and it is purely
written to show its resemblance to the sample moment that we used earlier.

Therefore, (52) can equivalently be written as

X′u = 0 (53)

From (53) we can get the MoM estimator of β as
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X′u = 0

⇔ X′(y −Xβ) = 0

X′y = X′Xβ

⇔ β̂MoM = (X′X)
−1

X′y. (54)

To get the asymptotic properties, expand (54) as before to yield

β̂MoM = (X′X)
−1

X′(Xβ + u)

= (X′X)
−1

(X′X)β + (X′X)
−1

X′u

= β + (X′X)
−1

X′u (55)

= β +

(
1

n
X′X

)
−1 1

n
X′u
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and noting that

plim
1

n
X′X = Qxx

plim
1

n
X′u = E(x′iui)

with Qxx being a full rank (ie invertible) matrix and E(x′iui) = 0.

With these assumptions in place, we can use a CLT to show that

√
n
(
β̂MoM − β

)
d−→ N

(
0,Var

(
β̂MoM

))
where Var

(
β̂MoM

)
= Q−1

xxVar(x′iui)Q
−1
xx , which under the assumption of

homoskedasticity reduces to
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Var
(
β̂MoM

)
= Q−1

xxVar(ui)

and can be estimated as

V̂ar
(
β̂MoM

)
= (X′X)−1σ̂2

u. (56)

The IV Estimator has the EGE

Z′u = 0 (57)

in analogy to (53), where Z is the n× k matrix of instruments for X. Expanding
(57) we get

Z′(y −Xβ) = 0

Z′y = Z′Xβ

⇔ β̂IV = (Z′X)
−1

Z′y. (58)
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To get the asymptotic properties, we again take (58) and replace y with its right
hand side to get

β̂IV = (Z′X)
−1

Z′(Xβ + u)

= (Z′X)
−1

(Z′X)β + (Z′X)
−1

Z′u

= β + (Z′X)
−1

Z′u

= β +

(
1

n
Z′X︸ ︷︷ ︸

plim =E(z′ixi)=Qzx

)−1

plim =E(z′iui)︷ ︸︸ ︷
1

n
Z′u . (59)
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Thus, as long as E(z′iui) = 0 holds, we have a consistent estimator. The asymptotic
distribution we get from

√
n
(
β̂IV − β

)
=

(
1

n
Z′X

)−1

︸ ︷︷ ︸
=Q−1

zx

√
n

(
1

n
Z′u

)
︸ ︷︷ ︸

d−→N(0,Var(z′iui))

√
n
(
β̂IV − β

)
d−→ Q−1

zxN
(
0,Var

(
z′iui

))
√
n
(
β̂IV − β

)
d−→ N

(
0,Q−1

zx Var
(
z′iui

)
Q−1

zx

)
(60)

in general and if we want to make an independence assumption about the relationship
between zi and ui as in the standard OLS case without heteroskedasticity, we get
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Var
(
z′iui

)
= E[

(
z′iui

) (
z′iui

)′
]

= E[z′iuiuizi]

= σ2
uE(z′izi)

which can be estimated by σ̂2
u

1
n
Z′Z, where σ̂2

u is computed from the IV residuals

û = y −Xβ̂IV.

Note that Qzx is the cross product moment matrix of zi and xi and therefore
measure how much zi and xi co-vary (in a matrix sense).
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When does IV estimation break down?

This is an important question that naturally arises with an estimator.

There are two important conditions that need to be met for IV estimation:

1) if we use zi as an instrument for xi, then zi must be a valid instrument, such
that E(ziui) = 0 holds ⇒ zi is exogenous. This is known as Instrument
Validity in the literature.

Note that if 1) does not hold, then there is no point in using IV estimation in the
first place.

Also, as with the OLS scenario, if only one instrument is used for one endogenous
regressor, then there is no way of testing for the validity of the instrument.

When we have more instrumental variables than regressors needing instruments
(overidentified system), then we will be able to perform a test known as an
overidentification test.
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This is a test that examines the validity (or exogeneity) of the excess moment
conditions.

2) We need zi to be a relevant instrument, such that Cov(zi, xi) 6= 0 or
Corr(zi, xi) 6= 0. In fact, we can see from the variance of β̂IV

1 that we would
actually want Corr(zi, xi) to be as close to one (in absolute value) as
possible, so that Corr(zi, xi)

2 is close to one.

Recall that

Var(β̂IV
1 ) =

1

Corr(xizi)2

(
σ̂2
u,IV∑n

i=(xi − x̄)2

)
︸ ︷︷ ︸

looks like OLS Variance

. (61)

Looking at the equation in (61) it is clear that there are two terms that influence the
variance of β̂IV

1 .
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1)

(
σ̂2
u,IV∑n

i=
(xi−x̄)2

)
2) 1

Corr(xizi)2

Now, the first term looks like the estimator of the standard OLS variance of β̂1, but
the important difference here is that σ̂2

u,IV is computed from

ûi = yi − β̂IV
0 − β̂IV

1 xi

and not from the usual OLS one which is

ûi = yi − β̂OLS
0 − β̂OLS

1 xi

where evidently β̂OLS
i 6= β̂IV

i for i = 0, 1, in general. The second term is just the
squared correlation between xi and zi.
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Let us assume that for simplicity of exposition that σ̂2
u,IV is equal to our OLS variance

σ̂2
u,OLS. If that is the case, then the only difference between Var(β̂IV

1 ) and Var(β̂OLS
1 )

comes from Corr(xizi).

To see then how Corr(xizi) influences the variance of the IV estimator, let us express
it as:

Var(β̂IV
1 ) =

Var(β̂OLS
1 )

Corr(xizi)2
. (62)

Clearly, having Corr(xizi)
2 = 0 is not going to be a good thing.

When choosing an instrument zi for xi it is therefore crucial that the correlation
between these two is as large as possible (ie, close to 1) to have a ”precise” estimate
of our β̂IV

1 .
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For instance, consider the following correlation values for xi and zi.

Corr(xizi) 0.1 0.2 0.3 0.5 0.7
1/Corr(xizi)

2 100 25 ≈ 11 4 ≈ 2

So even with a rather strong instrument such that Corr(xi, zi) = 0.7 (70%), the
variance is about double the size of the OLS estimator.

In the context of the matrix version of the IV estimator shown in (58) and the large
sample distribution shown in (60) we need E(z′ixi) = plim 1

n
Z′X = Qzx to be of

full column rank, so that the inverse will exist.

� this is analogous to the condition of Qxx being of full column rank, so is a
necessary condition for estimation.
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Now it should be clear that, because xi and zi are random variables, Corr(xi, zi) will
also be a random variable, so that when we try to gauge how weak (or strong) an
instrument is (that is, its validity) we will need to use a statistical test on the
”sample correlation” that we compute.

� in the simplest case this will involve running a regression of xi on a constant
and zi and then ”test” if the coefficient on zi is statistically different from 0.

� the rule of thumb is that if the t−statistic on the zi instrument variable is less
than

√
10, then the instrument is considered to be weak and the coefficients

and it standard errors are most likely useless for economic analysis.
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Research in the weak instrument literature is still quite young and in progress. What
is known is that when instruments are weak,

� not only are the standard errors large as evident from the simple example above

� but the distribution of the βIV
1 estimator can be highly non-normal, even if

there is a very large number of observations available (ie. 30 000). See plot
below taken from page 215 of Pagan and Robertson (1998).
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Figure 2: Large Sample distribution of IV estimator with weak instruments.
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More instruments than endogenous variables: Generalised IV Estimator (GIVE)

An obvious question that arises in the IV setting is what to do when there are more
moment conditions than parameters to be estimated, or equivalently, when there are
more instrumental variables available than endogenous regressors.

For example, suppose you have the model:

yi = β0 + β1xi + ui (63)

where again E(xiui) 6= 0 and there are two instrumental variables available, z1i and
z2i, which can be used to estimate the unknown parameters.

With these two instruments, we then have a total of three moment conditions (one
for the intercept term β0) which are:
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mi1 = E(ui) = 0⇒ E(yi − β0 − β1xi) = 0

mi2 = E(z1iui) = 0⇒ E[z1i(yi − β0 − β1xi)] = 0

mi3 = E(z2iui) = 0⇒ E[z2i(yi − β0 − β1xi)] = 0

so this translates into three equations to be solved for two unknown parameters β0

and β1.

This system is thus ”overidentified”, since we have more equations than unknowns.

The problem is now one of finding ”a good way” of combining the excess of
instruments/equations (or information)

� in a good way is meant in a statistical sense, translating in a consistent
estimator with the smallest possible variance.

� one could of course always reduce the excess of instruments or moments by
just using the exact number that we need, thus ”throwing” the others away
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� but intuition tells us that this is probably not a good way to go about it.

We are going to look at this problem in the context of a two step procedure known
as Two Stage Least Squares (TSLS or 2SLS).

� general treatment of this falls under the heading of Generalised IV estimation
(GIVE) and is related to Generalised Method of Moments (GMM) estimation

� the term ”Generalised” addresses the problem of optimally ”weighting” the
excess of moment conditions (or instruments) without loosing any important
information

� the weighting is done by looking at the information content of each moment
condition (or instrument) and assigning a higher weight to those with more
information
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So how does GIVE work?

Recall that the moment condition for the intercept term always gives us the following
simple EGE to solve

1

n

n∑
i=1

(yi − β0 − β1xi) = 0 (64)

⇒ β̂IV
0 = ȳ − β̂IV

1 x̄.

So this is straight forward to solve, once β̂IV
1 has been found.

Now to get an estimate of βIV
0 with two instruments, we will first run a regression of

xi on a constant and the two instruments z1i and z2i to get the predicted (or
fitted) values of xi, that is, x̂i.
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Then, form the EGE of the moment condition as:

1

n

n∑
i=1

[x̂i(yi − β0 − β1xi)] = 0 (65)

where, after plugging in the relation for β̂IV
0 from the EGE in (64), we get the

expression for β̂IV
1

β̂IV
1 =

∑n
i=1(x̂i − ¯̂x)(yi − ȳ)∑n
i=1(x̂i − ¯̂x)(xi − x̄)

=

∑n
i=1(x̂i − x̄)(yi − ȳ)∑n
i=1(x̂i − x̄)(xi − x̄)

(66)

where ¯̂x ≡ x̄ from OLS theory, because we always have that:

ŷi = β̂0 + β̂1xi + ûi
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and averaging on both sides yields

¯̂y = β̂0︸︷︷︸
=ȳ−β̂1x̄

+β̂1x̄+ ¯̂u︸︷︷︸
=0 by OLS FOC

¯̂y = ȳ − β̂1x̄+ β̂1x̄

= ȳ.

We can see therefore, that running the first regression of xi on z1i and z2i (and a
constant) does the ”generalisation” step of the GIVE estimator.

It further gives the instruments z1i and z2i their ”optimal weights” from OLS in
predicting xi.
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Equivalent TSLS representation

The representation above was the GIVE representation, but we can find an equivalent
representation in terms of the TSLS estimator. The sequence of operations is then:

1) regress xi on z1i, z2i and a constant to get x̂i

2) use x̂i directly in a regression of yi and x̂i and a constant, ie., estimate the
equation

yi = β0 + β1x̂i + ui. (67)

The β̂i, i = 0, 1 that we get from this TSLS procedure is the same as the
GIVE estimator from above.
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Asymptotic Distribution of TSLS/GIVE

To find asymptotic distribution of TSLS/GIVE estimators, again expand (66) as:

Replacing (yi − ȳ) = β1(xi − x̄) + ui in (66) yields

β̂IV
1 =

∑n
i=1(x̂i − x̄)(β1(xi − x̄) + ui)∑n

i=1(x̂i − x̄)(xi − x̄)

= β1 +

∑n
i=1(x̂i − x̄)ui∑n

i=1(x̂i − x̄)(xi − x̄)

= β1 +

∑n
i=1(α̂0 − α̂1z1i − α̂2z2i)ui∑n

i=1 x̂ixi − x̄2

= β1 +

∑n
i=1(α̂0 − α̂1z1i − α̂2z2i)ui∑n

i=1(α̂0 − α̂1z1i − α̂2z2i)xi − x̄2
(68)

where x̂i = α̂0 − α̂1z1i − α̂2z2i, ie., the fitted value from the first stage regression.
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We again see that the individual components of (68) matter for consistency of
TSLS/GIVE estimators, ie., z1i and z2i must be uncorrelated with ui in numerator.

In the denominator we have the covariance between x̂i and xi, which will be related
to the covariance between the individual components in the fitted values
x̂i = α̂0 − α̂1z1i − α̂2z2i, that is, the instruments z1i and z2i.

An important point to note here is that the variance of the residuals is computed as

σ2
u,IV =

1

n

n∑
i=1

u2
i

ui = yi − β̂IV
1 − β̂IV

1 xi

and not ui = yi − β̂IV
1 − β̂IV

1 x̂i, so one has to be careful when constructing the
residual variance by hand and most econometric software packages do this properly.
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A few extra comments:

We outlined TSLS initially as an IV problem within the IV (or GIVE) framework was
to highlight the importance of having strong instruments to have a ”useful”
estimator.

⇒ need to have high R2 values of the first stage step in TSLS.

The hardest part in TSLS/GIVE is finding good instruments. Where do instruments
come from?

� no quick answer to that. we need to use our understanding of economics and
economic theory

� instruments have to be relevant as well as valid

� there are many examples in the literature and textbooks were later analysis
show that instruments were actually quite poor, so IV estimation results are
useless.
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General Matrix version of TSLS/GIVE

The asymptotics are much easier to handle in a matrix set up. So let us look at
TSLS/GIVE in matrix notation.

Let X be an (n× k) matrix of endogenous regressors needing instruments and Z an
(n×m) matrix of instruments, where m > k and n is the sample size.

The first stage regression in TSLS is:

X = Zα+ E (69)

where E is an (n× k) matrix of residuals and α is an (m× k) matrix of parameters
that links the m instruments to the k endogenous regressors.

We get fitted values for (69) from

X̂ = Zα̂ (70)
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α̂ = (Z′Z)−1(Z′X). (71)

Now

X̂ = Zα̂

X̂ = Z(Z′Z)−1(Z′X)

= PzX

where Pz = Z(Z′Z)−1Z′ is known as the hat or projection matrix, which has the
properties

Pz
′ = Pz

PzPz
′ = Pz

PzZ= Z.
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Given X̂, the second regression in TSLS would ”regress” y on X̂ to yield

β̂TSLS = (X̂′X̂)
−1

X̂′y.

But

(X̂′X̂)
−1

X̂′y = ([PzX]′[PzX])−1X̂′y

= (X′Pz
′PzX)−1X̂′y

= (X′P′zX)
−1

X̂′y

= (X̂′X)−1X̂′y

⇔ β̂TSLS = (X̂′X)−1X̂′y (72)
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The GIVE estimator sets up a ”Generalised” moment condition of the form

X̂′u = 0

⇔ X̂′(y −Xβ) = 0

⇔ β̂GIVE = (X̂′X)−1X̂′y. (73)

Comparing (72) and (73) it is clear that the two solve the same optimality problem
and hence yield the same estimator.
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Asymptotic Distribution of TSLS/GIVE in matrix form

Doing the standard expansion on (72) or (73), we get

β̂TSLS = (X̂′X)−1X̂′y

= (X̂′X)−1X̂′(Xβ + u)

= β + (X̂′X)−1X̂′u. (74)

The relation in (74) implies again that

√
n
(
β̂TSLS − β

)
=

(
1

n
X̂′X

)−1 √
n

n
X̂′u (75)
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where 1
n
X̂′X will go to E(x̂′ixi) = Qx̂x

(k×k)

(some constant) in large samples and

√
n
n
X̂′u will converge to a Normal random variable with mean E(x̂′iui)

(k×1)

= 0 (if

assumptions hold) and variance

Var

(√
n

n
X̂′u

)
= Var

(√
n

n

n∑
i=1

x̂′iui

)

=
1

n
Var

(
n∑
i=1

x̂′iui

)

=
1

n
nVar

(
x̂′iui

)

95 / 133

Generalised Instrumental Variable Estimator
More moment instruments than endogenous variables

= E(x̂′iuiuix̂i)

= σ2
uE(x̂′ix̂i)

where the last result follows from the Homoskedasticity assumption of the residuals
ui.

Given these results, we can than take (75) and then see that the (asymptotic)
distribution of

√
n
(
β̂TSLS − β

)
∼ Q−1

x̂x ×N
(
0, σ2

uE(x̂′ix̂i)
)︸ ︷︷ ︸

Normal RV

∼ N
(
0,Q−1

x̂xσ
2
uE(x̂′ix̂i)Q

−1′
x̂x

)
.

Taking the fact from above, this simplifies to

√
n
(
β̂TSLS − β

)
∼ N

(
0, σ2

uQ
−1
x̂x

)
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where Var(β̂TSLS) can be estimated from

V̂ar(β̂TSLS) =
1

n
σ̂2
u

(
1

n
X̂′X

)−1

= σ̂2
u

(
X̂′X

)−1

= σ̂2
u

(
X′PzX

)−1

with σ̂2
u = û′û/n and û = y −Xβ̂ and not y − X̂β̂.
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Allowing for Exogenous variables

Suppose now that we have a more complicated regression model, taking the form

yi = β0 + β1x1i + . . .+ βBxBi︸ ︷︷ ︸
B endogenous variables

+ γ1w1i + . . .+ γGwGi︸ ︷︷ ︸
G truly exogenous variables

+ui (76)

� {wgi}Gg=1 are G truly exogenous variables that do NOT need an instrument

� {xbi}Bb=1 are B endogenous variables for which we need instruments, as the
condition E(xbiui) = 0 is violated.

Let {zli}Ll=1 be L available instrumental variables for {xbi}Bb=1.

To estimate the relation in (76) we need L ≥ B for the system to be identified.
Recall from before that we had

a) a just identified case when L = B

b) an over-identified case when L > B.
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To estimate all the γ and β parameters in (76) using TSLS (or GIVE) we need to
again replace {xbi}Bb=1 with their fitted values {x̂bi}Bb=1 and then run the regression:

yi = β0 + β1x̂1i + . . .+ βB x̂Bi + γ1w1i + . . .+ γGwGi + ui. (77)

What is different here to the previous treatment is how we obtain the {x̂bi}Bb=1.

These will need to be estimated by regressing each of the endogenous variables
{xbi}Bb=1 not only on all the instruments as before, but also on all the truly

exogenous regressors {wgi}Gg=1.

The fitted values {x̂bi}Bb=1 are then obtained as:

x̂bi = θ̂0b + θ̂1iz1i + . . .+ θ̂Liz1i︸ ︷︷ ︸
L instruments for x

+ α̂1w1i + . . .+ α̂GiwGi︸ ︷︷ ︸
G truly exogenous variables

(78)

for all b = 1, . . . , B, that is, for each endogenous variable.
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Note here that we can again write this in the same matrix set up as before, but we
now we need to add the W matrix of truly exogenous variables to the Z and X
matrices, but the math is the same.

The point of this is to control for the effect of truly exogenous variables in the first
stage regression when forming the predictions (or fitted values) of the endogenous
{xbi}Bb=1.

This is important as the x′s and the w′s will in general be correlated and an
allowance for this needs to be made.

A regression of the {xbi}Bb=1 on all exogenous as well as instrumental variables is
often referred to as the reduced form of a model.

� terminology comes from the literature on simultaneous equation models

� will arrive at reduced from after ”substituting out” the endogenous variables.
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Testing the strength of the instruments

For GIVE or TSLS to work well, we saw earlier that we need two conditions to hold

i) Instrument validity: E(ziui) = 0

ii) Instrument relevance: Corr(xizi) 6= 0

If we assume for the moment that i) holds, we can look at ii) more carefully by
examining how strongly our instruments zi are correlated with the endogenous
variables xi. This is called instrument strength.

How do we test the strength of the instruments?

In the simplest example where we only have one endogenous variable xi and one
instrument zi and no other ”truly exogenous” regressor wi

� run the ”first stage regression” of xi on a constant and zi

� do a t−test on the coefficient of zi
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that is: estimate

xi = θ0 + θ1zi + εi (79)

and test the null hypothesis H0 : θ1 = 0 using a standard t−test

t− statistic =
θ̂1 − 0

se(θ̂1)
(80)

The ”rule of thumb” is (as mentioned before) that the size of the t−statistic should
be greater that

√
10 for the instrument not to be considered weak.

Clearly, the bigger the t−statistic, the stronger the instrument.
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When we have more instruments than regressors (dim(zi) > dim(xi)) as well as
other truly exogenous variables in the model, it is important to account (or control)
for the influence of the other exogenous regressors on the model.

This means that when we test for the strength of the instruments, we will need to
include the truly exogenous regressors wi as controls in the ”first stage regression”.

For the bth endogenous variable xbi that we need to instrument, we would run the
”first stage regression”:

xbi = θ0b + θ1iz1i + . . .+ θLiz1i︸ ︷︷ ︸
L instruments for x

+α1w1i + . . .+ αGiwGi︸ ︷︷ ︸
G truly exogenous variables

+εi (81)

for all b = 1, . . . , B, that is, for each endogenous variable.
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In the (big) ”first stage regression” in (81) we explicitly account for the influence of
the truly exogenous wi variables on xi when examining the strength of the
instruments zi.

This is important, because if most of the variation in the endogenous variables xi is
explained by the truly exogenous variables wi, then the instruments are useless and
we will not be able to figure out what the impact is of xi on yi in (76)

� most of the variation will be related to wi but we also include wi in the
regression in (76)

� not enough ”information” to determine cause and effect from xi and wi.

104 / 133



Instrumental Variable Estimation
Testing the strength of the instruments

To test the strength of the instruments in the more general set up with many
instruments as well as truly exogenous variables we need to run the ”first stage
regression” (81) and then test the join null hypothesis (with an F−test)

H0 : θ1 = θ2 = . . . = θL = 0 (82)

against the alternative that at least one instrument is ”significant” in the regression.

For instruments not to be considered weak, we need the F−statistic from (82) to be
greater than 10.

The value of 10 was determined by Stock and Yogo (2005) (see the paper for details).

Note that we are only testing θ and not α in the F−test in (82).
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Testing for Endogeneity

Recall that E(xiui) = 0 cannot be tested directly using the OLS residuals ûi in place
of ui. Note that this value is always set equal 0 by the OLS first order conditions

Because OLS is more efficient than TSLS/GIVE when endogeneity is not a problem,
we would still like to test somehow for the endogeneity of the regressor xi to
determine whether we need to use IV estimation in the first place.

Intuition tells us that we could determine if endogeneity is a problem by computing
β̂OLS

1 and β̂TSLS
1 and then looking at how similar these values are to one another.

Since we are dealing with random variables here, we would like to see how different
β̂OLS

1 and β̂TSLS
1 are, but taking into account the random variation of these two RVs.
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Hauseman test for Endogeneity

The Hausman (1978) test for endogeneity does exactly that. It is defined as:

h− statistic =

(
β̂TSLS

1 − β̂OLS
1

)2[
Var(β̂TSLS

1 )−Var(β̂OLS
1 )

] . (83)

If we define q =
(
β̂TSLS

1 − β̂OLS
1

)
, then (83) looks like

h− statistic =
q2

Var(q)
(84)

which looks like a standard t−test, squared and under the null hypothesis of q = 0.

Recall that a t−statistic goes towards a z− statistic (where z is standard normal) as
the sample size and thus the degrees of freedom go to infinity.

Also, if you take the square of the z−statistic, you will get a new RV that will be a
χ2 RV and if you take the ratio of two χ2 RVs divided by their degrees of freedom,
you will end up with an F RV.
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The Hausman test looks at how close the β̂OLS
1 is to β̂TSLS

1 and adjusts for the
variation in the series by dividing by the variance.

A word of caution on how Var(q) looks.

Recall that we always have the rule:

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X,Y ). (85)

The result of the variance of the difference being equal to the difference of the
variances is due to:

Cov(β̂TSLS
1 , β̂OLS

1 ) = Var(β̂OLS
1 ) (86)

so that we end up with
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Var(q) = Var
(
β̂TSLS

1 − β̂OLS
1

)
= Var(β̂TSLS

1 ) + Var(β̂OLS
1 )− 2Cov(β̂TSLS

1 , β̂OLS
1 ) (87)

= Var(β̂TSLS
1 ) + Var(β̂OLS

1 )− 2Var(β̂OLS
1 )

= Var(β̂TSLS
1 )−Var(β̂OLS

1 ).

Hausman’s Result on Covariance

This comes from Lemma 2.1 in Hausman (1978) (see page 1253) which says that if
you have two consistent estimators (both are consistent under the null hypothesis of
no endogeneity, even the OLS one), of which one reaches the Cramer-Rao lower
bound (ie., is the most efficient estimator), then the covariance between the efficient
estimator and the difference between the efficient and inefficient estimator is 0.

With simple algebra you can show that this translates into the relation given in (86).
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A convenient way to implement the Hausman test is to do the following:

Suppose you have the model

yi = β0 + β1xi + γ1wi + ui (88)

where wi is a truly exogenous variable, and you want to test if xi is correlated with
ui and thus endogenous.

Suppose you have two instruments z1i and z2i. Then you would run the (reduced
form) regression:

xi = θ0 + θ1z1i + θ2z2i + α1wi + εi. (89)

and compute the predicted values x̂i.
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Note that once you have run the regression in (89) you can decompose xi as follows:

xi = x̂i + ε̂i (90)

where ε̂i is the fitted regression error or residual that you get from OLS, and x̂i and
ε̂i are, by construction of the OLS residuals and predicted values, uncorrelated.

Now, since

x̂i ≡ E(xi|z1i, z2i, wi)

= θ̂0 + θ̂1z1i + θ̂2z2i + α̂1wi

by definition, it captures the correlation between the endogenous regressor xi and the
instruments z1i, z2i as well as wi (the truly exogenous variable).
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The fitted residual ε̂i can thus be thought of as the left-over bit of the endogenous
variable xi after taking out the effect of z1i, z2i and wi which are not correlated
with ui in (88) above.

Thus, the left-over bit ε̂i has to contain that part of xi that is correlated with ui.
That is, if E(xiui) 6= 0, then E(uiε̂i) 6= 0, because ε̂i = (xi − x̂i), so that

E(uiε̂i) = E[ui(xi − x̂i)]

= E(uixi)− E(uix̂i)︸ ︷︷ ︸
=0 by construction/assumption

(91)

E(uix̂i) follows because z1i, z2i and wi are by construction of the problem or our
definition of instruments and truly exogenous variables uncorrelated with ui.
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An intuitive implementation of the Hausman test is then to take the ε̂i from the
fitted regression in (89) and plug them into the regression in (88) for yi as an extra
regressor.

That is, we form

yi = β0 + β1xi + γ1wi + δε̂i + ui (92)

and test the null hypothesis H0 : δ = 0 (which is the null of no correlation between
xi and ui and thus no endogeneity problem).

If we reject the null hypothesis that δ = 0, then we have an endogeneity problem.

Note that the relation in (92) is a convenient way to implement the test because
ultimately we want to test if β̂TSLS

1 = β̂OLS
1 and when we expand ε̂i = (xi − x̂i) we

would get β1xi as well as −δx̂i in the regression, where the latter is the TSLS and
the former the OLS estimate.
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If we have more than one endogenous variable to test for, say x1i as well as x2i, then
we would simply get predicted values from two separate reduced form regressions, as
in (89) for both x1i, x2i and obtain corresponding (fitted) regression errors ε̂1i and
ε̂2i.

Including ε̂1i and ε̂2i in the regression of yi on a constant, xi, as well as wi and
using an F−test on the coefficients of ε̂1i and ε̂2i would then tell us whether both
suspected endogenous variables are actually correlated with ui.

So again, if the null hypothesis H0 : δ1 = δ2 = 0 is rejected, then we have an
endogeneity problem with respect to either x1i, x2i or both.
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Testing instrument Validity (over-identification testing)

Recall that we use B to denote the No. of endogenous regressors (dim(xi)) and L to
denote the No. of instruments (dim(zi)).

One problem with testing the validity of instruments (E(ziui) = 0) is that one
cannot perform a test when L = B, that is, when we have a just identified case.

Nevertheless, it is possible to test whether an excess of instruments is valid, but
this is only possible if and only if L > B. Testing the excess of instruments can then
help us try to weed out the instruments that are not valid, ie, find those where
E(ziui) 6= 0.

Recall that if the instruments are not valid, then TSLS is biased just as OLS is, but at
the same time it can be highly inefficient. So there are two potential downsides and it
is important to work out how likely it is that an excess of instrument(s) is not valid.
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To test the excess instruments for validity, we can again look at a regression
approach to implement this. Suppose we are interested in the model

yi = β0 + β1xi + γ1wi + ui (93)

where E(uixi) 6= 0 and we have instruments z1i and z2i, but we are not sure if they
are valid instruments.

Then, to implement an over-identification test we proceed as follows.

1) Construct
ûTSLS
i = yi − β̂TSLS

0 − β̂TSLS
1 xi − γ̂TSLS

1 wi

where β̂TSLS
j for all j = 0, 1 and γ̂TSLS

1 are the two stage least squares
estimates of the parameters in (93) (obtained from a normal TSLS regression)

2) Regress ûTSLS
i on z1i, z2i and wi (all instruments and truly exogenous

regressors), that is:

ûTSLS
i = φ0 + φ1z1i + φ2z2i + φ3ωi + νi (94)

with νi being some regression error of this equation.
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3) Compute the F−statistic of the regression restriction that φ̂1 and φ̂2 are
equal to zero, ie., test the null hypothesis H0 : φ1 = φ2 = 0. The
over-identifying restriction test statistic, commonly referred to as the J−test,
is then constructed as

J − statistic = L× F − statistic (95)

where L = No. of instruments, which in this case is equal to 2.

The asymptotic distribution of the J−statistic is a χ2
(L−B) where (L−B) is the

degrees of freedom.

Note here that the degrees of freedom in the J−test is equal to the excess of the
number of instruments (L−B).
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To illustrate this, note that in (94) we have two instruments z1i and z2i for one
endogenous variable xi so the null hypothesis for the F−test is φ1 = φ2 = 0 against
the alternative of at least one not being zero.

The J−test is thus computed as 2× F−statistic but the critical values come from a
χ2 distribution with (L−B) = (2− 1) degrees of freedom. This is important to keep
in mind.

Note here once again that the over-identification test (the J−test) can only be
implemented when L > B, that is, when we have more instruments than endogenous
variables (an over-identified system).

We cannot implement the J−test when L = B.
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So what happens when we have J−statistic > χ2
(L−B) critical value?

Then we would reject the null hypothesis H0 : φ1 = φ2 = 0 which translates into
rejecting the validity of the (L−B) = (2− 1) = 1 surplus instruments, in favour of
the alternative.

The alternative means here that either z1i or z2i is not a valid instrument, as it is
still correlated with ui in (93), ie., the error term of the economic model of interest
that we wanted to estimate with OLS.

One obvious problem with the J−test is that it does not tell which instrument is
invalid. So we will again need to use our intuition about the economic model and an
understanding of the variable to figure our which instrument the trouble maker is.
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Simultaneous Equation Models: Background

Simultaneous Equation Models (SEMs) are in fact a much broader class of models
and we are only going to look at a few specific cases, mainly to illustrate the basics
of this literature.

Greene (2011) has in fact two chapters on this topic and in many ways we can think
of the Vector-Autoregression (VAR) literature in Macro-economics also falling into
this broad class.

The origins of SEMs, and standard examples always come back to the classic
Demand-Supply curve relations in economics. To understand the SEM literature and
to outline the original problem in estimating Demand-Supply curve relations, let us
consider such a simple scenario.
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The Demand-Supply curve relation

Suppose you have the following Demand-Supply relation

Demand: Qi = α1Pi + α2xi + uDi (96a)

Supply: Qi = β1Pi + uSi . (96b)

Both, Qi and Pi are endogenous variables here, where uDi and uSi are ”shocks” to
demand and supply, and xi is some exogenous variable.

Note that (96b) could also have been written down as

Inverse Supply: Pi = b1Pi + εSi (97)

that is, with Pi on the right hand side to make the ”endogeneity” of Pi more obvious.

This relation is known as the Inverse Supply equation in micro-economics.
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Because the system in (96) is assumed to be an equilibrium relationship, we only ever
observe Pi and Qi when this equilibrium relationship holds. See figure below.

Q

P D1
D2

D3

S1

S2

S3

i
Equilibrium 3

iEquilibrium 2 i
Equilibrium 1
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The Demand-Supply curve relation

For a given supply curve S1, prices P (are assumed to) adjust so that ”markets
clear” and equilibrium is reached.

This occurs by moving along the given supply and demand relations until an
intersection point is reached, the equilibrium point.

Recall from your study of microeconomics, that one always moves along the demand
and supply relations, when there are changes in the price (or quantity) of the
product, and that the demand and supply relations shift whenever a factor other
than price (or quantity) change.

Whenever both supply and demand shift at the same time, new equilibrium points
will be recorded and these will create a scatter of equilibrium values that will look like
a ”random scatter”.

Thus trying to use these ”scatter” data points to estimate the α and β parameters in
(96) will be unsuccessful.
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What we clearly need to do is to fix of one of the curves and induce shifts in the
other.

From, the relation in (96), we can see that if xi changes (the exogenous variable),
then this will result in shifts in the demand curve. The supply curve will remain fixed
as it is not a function of xi.

These shifts in the demand curve due to changes in xi which will again result in new
equilibrium points that we can observe and record would make it possible to
”identify” the supply curve and hence ”estimate” the parameter β.

We can illustrate this first with a diagram (see the figure below). Note here again
that we know that only the demand curve will shift when xi changes.

The supply curve remains fixed as it is not a function of xi.
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S3

D1

D2

D3

i
Equilibrium 3

iEquilibrium 2
iEquilibrium 1
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Forming the ”Reduced Form” Equations

Let us now look at what happens algebraically when we have this classic
demand-supply curve model with one exogenous variable xi in the demand equation
as in (96).

To clear up a bit of the terminology used in SEM, the original formulation in (96) is
called the structural model, containing structural parameters α2, α2 and β, which
are the actual parameters of interest.

The reduced form model represents all endogenous variables as a function of all
the exogenous variables only.

In the TSLS examples discussed so far, the exogenous variables were the zi (the
instruments) and the wi (truly exogenous) variables.
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Forming the ”Reduced Form” Equations

The reduced form equations for the SEM in (96) can be arrived at by setting the
demand and supply equations equal to one another, yielding

Demand Q = Supply Q

β1Pi + uSi = α1Pi + α2xi + uDi

(β1 − α1)Pi = α2xi + uDi − uSi

Pi =
α2

(β1 − α1)
xi +

(
uDi − uSi

)
(β1 − α1)

(98)

so the reduced form for the endogenous variable price Pi is:

Pi = π1xi + e1i (99)

where

π1 =
α2

(β1 − α1)
and e1i =

(
uDi − uSi

)
(β1 − α1)

.
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Similarly, taking Pi = π1xi + e1i in (99) and plugging it into the supply equation in
(96b) yields:

Qi = β1Pi + uSi

= β1 [π1xi + e1i] + uSi

=
β1α2

(β1 − α1)︸ ︷︷ ︸
=π2

xi + β1

(
uDi − uSi

)
(β1 − α1)

+
(β1 − α1)

(β1 − α1)
uSi

= π2xi +
β1u

D
i − α1u

S
i

(β1 − α1)︸ ︷︷ ︸
=e2i

Qi = π2xi + e2i. (100)
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So this is the second reduced form equation for Qi.

Note here that π1 and π2 are the reduced form parameters, and that e1i and e2i

are the reduced form shocks or errors.

More importantly, note here also that π1 and π2 can be estimated consistently by
OLS because the xi variable is (assumed to be) exogenous. So we can always find π1

and π2.
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The identification problem

You can see that

π1 =
α2

(β1 − α1)
and π2 =

β1α2

(β1 − α1)
(101)

so that once we run OLS of Pi on xi and Qi on xi we will get consistent estimates
of π1 and π2.

But we don’t care about the reduced form parameters π1 and π2 and are instead
interested in the structural parameters α1, α2 and β1.

From (101) you can see that once we replace π1 and π2 with their OLS estimates, we
are faced with the problem of solving for 3 unknowns α1, α2 and β1 with only 2
equations.

This is a classical example of an un-identified system of equations.
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In this particular case we can see that

π2

π1
=

β1α2

(β1 − α1)
÷ α2

(β1 − α1)

=
β1α2

(β1 − α1)
× (β1 − α1)

α2

= β1.

So replacing π2
π1

by their OLS estimates allows us to recover an estimate for β1 in the

supply equation (96b) Qi = β1Pi + uSi .

In this setting, it is the demand equation Qi = α1Pi + α2xi + uDi that is not
identified in the system, and we will not be able to estimate α1 and α2 without some
other exogenous variables.

131 / 133

Simultaneous Equation Models
The identification problem

What is needed for identification?

The necessary condition for identification in a system of G simultaneous equations is
as follows: Suppose you have G endogenous variables. Then, at least (G− 1)
variables must be absent (excluded) from any particular equation for it to be
identified.

If the particular equation is identified, then we can use TSLS to estimate the
structural parameters of that equation.

In our simple example above, we had G = 2, and thus (G− 1) = 1. The supply
equation had exactly one excluded variable, that is, xi. So we can perform
”standard” TSLS as we have done before in the context of IV regression.

This is implemented as follows:

a) Run the reduced form regression of Pi on xi to get π̂1 and form the
predicted or fitted value P̂i = π̂1xi.

b) Then, get an estimate of the structural parameter β1 by regressing Qi on P̂i.
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